DHCP & NAT

DHCP – Dynamic Host Configuration Protocol

DHCP Motivation

- □ BOOTP
 - Support sending extra information beyond an IP address to a client to enable customized configuration
 - Effectively solve one of the major problems that administrators have with manual configuration
- ☐ Problems of BOOTP
 - BOOTP normally uses a static method of determining what IP address to assign to a device
- ☐ Dynamic Host Configuration Protocol (DHCP)
 - DHCP is an extension of the BOOTP. The first word describe the most important new capability added to BOOTP
 - > Assign IP dynamically
 - > Move away from static, permanent IP address assignment
 - Compatible with BOOTP

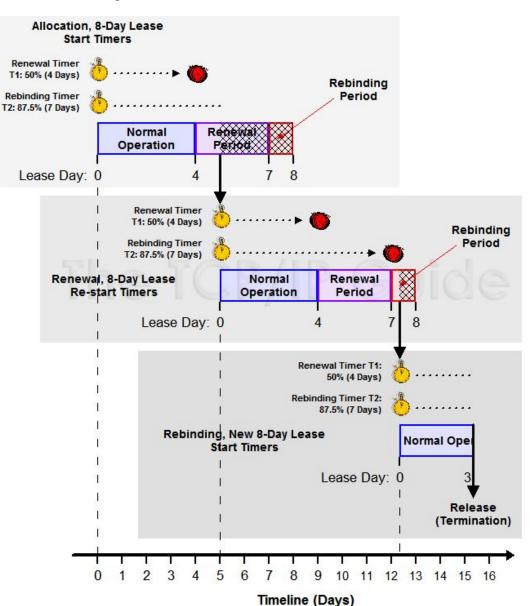
DHCP introduction

- \Box DHCP
 - Dynamic address assignment
 - ➤ A pool of IP address is used to dynamically allocate addresses
 - > Still support static mapping of addresses
 - Enable a DHCP client to "lease" a variety of network parameters
 - > IP, netmask
 - Default router, DNS servers
 - > A system can connect to a network and obtain the necessary information dynamically
- ☐ Client-Server architecture
 - DHCP client broadcasts request for configuration info.
 - > UDP port 68
 - DHCP server reply on UDP port 67, including
 - > IP, netmask, DNS, router, IP lease time, etc.
- □ RFC
 - RFC 2131 Dynamic Host Configuration Protocol
 - RFC 2132 DHCP Options
- ☐ Two main function of DHCP
 - Provide a mechanism for assigning addresses
 - A method by which clients can request addresses and other configurations

DHCP Address Assignment

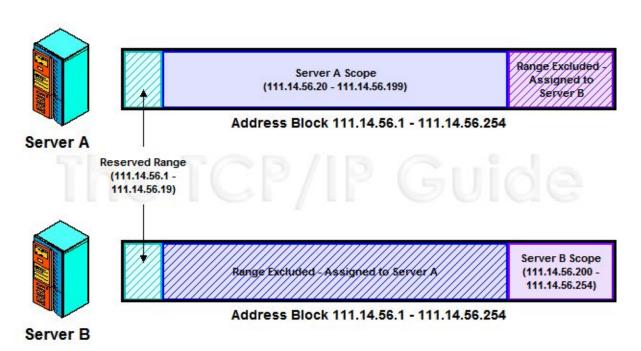
- ☐ Address allocation mechanisms
 - Provide flexibility for configuring addresses on different types of clients
 - Three different address allocation mechanisms
 - Manual allocation
 - IP address is pre-allocated to a single device
 - > Automatic allocation
 - Assign an IP address permanently to a device
 - Dynamic allocation
 - Assign an IP address from a pool for a limited period of time
- ☐ Manual allocation
 - Equivalent to the method BOOTP used
 - For servers and routers
 - Administrative benefit

Dynamic allocation

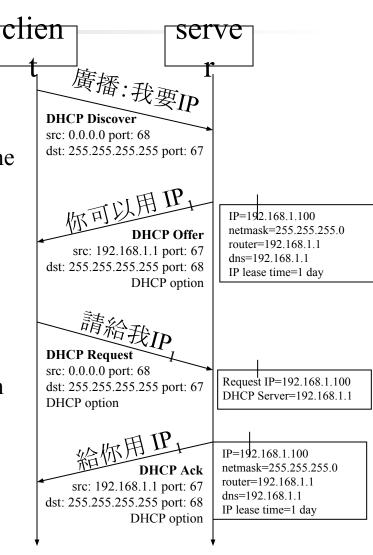

- ☐ Benefits for dynamic allocation
 - Automation
 - > No intervention for an administrator
 - Centralized management
 - An administrator can easily look to see which devices are using which addresses
 - Address reuse and sharing
 - Portability and universality
 - > Do NOT require DHCP server know the identify of each client
 - Support mobile devices
 - Conflict avoidance

DHCP Leases

- Dynamic address allocation is by far the most popular
 - Hosts are said to "lease" an address instead of "own" one
- ☐ DHCP lease length policy
 - A trade-off between stability and allocation efficiency
 - The primary benefit of using long lease is that the addresses of hosts are relatively stable
 - > Servers
 - The main drawback of using long leases is to increase the amount of time that an IP can be reused
- Assigning lease length by client type
 - Use long lease for desktop computers
 - Use short lease for mobile devices
- ☐ Factoring lease renewal into lease length selection


DHCP Lease "Life Cycle"

- ☐ Life cycle
 - Allocation
 - Reallocation
 - Normal operation
 - Renewal
 - Rebinding
 - Release


DHCP Lease Address Pools

- ☐ Each DHCP server maintains a set of IP addresses
 - Use to allocate leases to clients
 - Most of clients are equals
 - A range of addresses is normally handled as a single group defined for a particular network

DHCP Protocol (1)

- ☐ DHCP Discover
 - Broadcasted by client to find available server.
 - Client can request its last-known IP, but the server can ignore it.
- ☐ DHCP Offer
 - Server find IP for client based on clients hardware address (MAC)
- ☐ DHCP Request
 - Client request the IP it want to the server.
- ☐ DHCP Acknowledge
 - Server acknowledges the client, admit him to use the requested IP.
- **X** Question
 - Why not use the IP after DHCP offer?

DHCP Protocol (2)

- ☐ DHCP inform
 - Request more information than the server sent.
 - Repeat data for a particular application.
 - > ex. browsers request web proxy settings from server.
 - It does not refresh the IP expiry time in server's database.
- ☐ DHCP Release
 - Client send this request to server to releases the IP, and the client will un-configure this IP.
 - Not mandatory.

DHCP server on FreeBSD (1)

```
Kernel support
 device bpf
                     (FreeBSD 5.x\uparrow)
 pseudo-device bpf (FreeBSD 4.x\downarrow)
Install DHCP server
   /usr/ports/net/isc-dhcp43-server/
 • % cd /usr/local/etc
 • % cp dhcpd.conf.sample dhcpd.conf
Enable DHCP server in /etc/rc.conf
      dhcpd_enable="YES"
      dhcpd_flags="-q"
      dhcpd conf="/usr/local/etc/dhcpd.conf"
      dhcpd_ifaces=""
      dhcpd withumask="022"
```

DHCP server on FreeBSD (2)

Option definitions option domain-name "cs.nctu.edu.tw"; option domain-name-servers 140.113.235.107, 140.113.1.1; default-lease-time 600; max-lease-time 7200; ddns-update-style none; log-facility local7; /etc/syslogd.conf /etc/newsyslog.conf

DHCP server on FreeBSD (3)

Subnet definition subnet 192.168.1.0 netmask 255.255.255.0 { range 192.168.1.101 192.168.1.200; option domain-name "cs.nctu.edu.tw"; option routers 192.168.1.254; option broadcast-address 192.168.1.255; option domain-name-servers 140.113.17.5, 140.113.1.1; default-lease-time 3600; max-lease-time 21600; Host definition host fantasia { hardware ethernet 08:00:07:26:c0:a5; fixed-address 192.168.1.30; host denyClient { hardware ethernet 00:07:95:fd:12:13; deny booting;

DHCP server on FreeBSD (4)

- ☐ Important files
 - /usr/local/sbin/dhcpd
 - /usr/local/etc/dhcpd.conf
 - /var/db/dhcpd.leases (leases issued)
 - /usr/local/etc/rc.d/isc-dhcpd

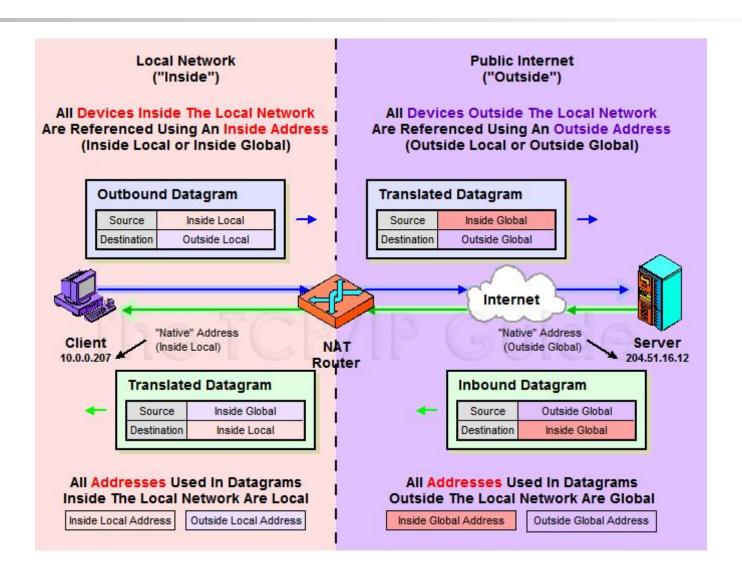
NAT – Network Address Translation

IP address crisis

- ☐ IP address crisis
 - Run out of class B address
 - > The most desirable ones for moderately large organizations
 - IP address were being allocated on a FCFS
 - With no locality of reference
- ☐ Solutions
 - Short term
 - > Subnetting and CIDR (classless inter-domain routing)
 - > NAT (network address translation)
 - Long term
 - > IPv6

Network Address Translation (NAT)

- ☐ Some important characteristics of how most organizations use the internet
 - Most hosts are client
 - Few hosts access the internet simultaneously
 - Internet communications are routed
- Network Address Translation
 - RFC 1631, in May 1994
 - A basic implementation of NAT involves
 - Using one of the private addresses for local networks
 - ➤ Assigned one or more public IP addresses
 - The word 'translator' refers to the device that implements NAT

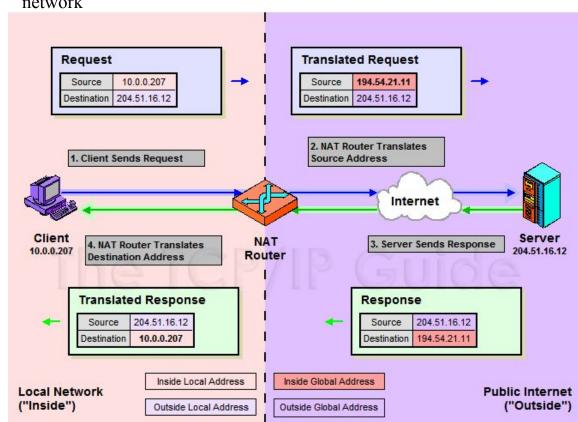

Private Address Space

- ☐ Private addresses space defined by RFC1918
 - 24-bit block (Class A)
 - > 10.0.0.0/8
 - 20-bit block (16 contiguous Class B)
 - > 172.16.0.0/12 ~ 172.31.0.0/12
 - 16-bit block (256 contiguous Class C)
 - > 192.168.0.0/16 ~ 192.168.255.0/16
- Operation consideration
 - Router should set up filters for both inbound and outbound private network traffic

Network Address Translation (NAT)

- \Box What is NAT?
 - Network Address Translation
 - Re-write the source and/or destination addresses of IP packets when they pass through a router or firewall.
 - What can be re-written?
 - Source/destination IPs
 - Source/destination ports
- ☐ What can NAT do?
 - Solve the IPv4 address shortage. (the most common purpose)
 - Kind of firewall (security)
 - Load balancing
 - Fail over (for service requiring high availability)

NAT Terminology

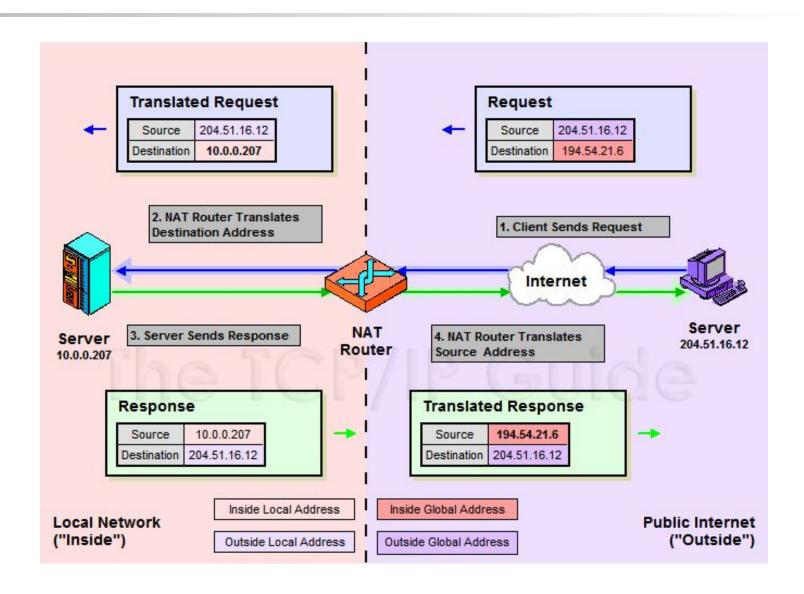


NAT Address Mappings

- ☐ Each time a NAT router encounters an IP datagram
 - It must translate addresses
 - BUT, how does it know what to translate, and what to use for the translated addresses
- Translation table
 - Maps the inside local address to the inside global address
 - Also contains mappings between outside global address and outside local address for inbound translations
- ☐ Two address mappings
 - Static mappings
 - ➤ Allow the inside host with an inside local address to always use a inside global address
 - Dynamic mappings
 - > Allow a pool of inside global addresses to be shared by a large number of inside hosts

NAT Unidirectional Operation

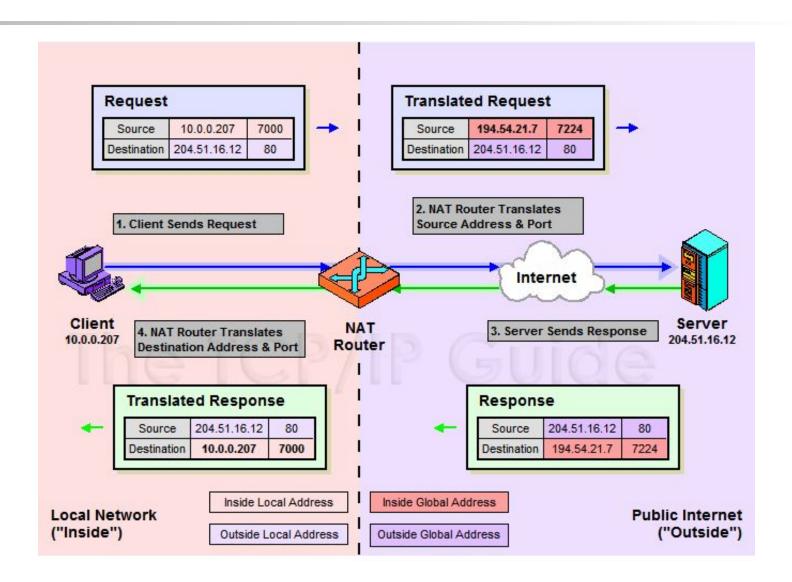
- ☐ NAT Unidirectional Operation
 - Traditional/Outbound operation
 - The original variety of NAT in RFC 1631
 - ➤ The simplest NAT
 - The client/server request/response communication would sent from the inside to outside network


NAT Bidirectional Operation

- NAT Bidirectional Operation
 - Two-Way/Inbound operation
 - A host on the outside network initiate a transaction with one on the inside
- ☐ The problem with inbound NAT
 - NAT is inherently asymmetric
 - The outside network does not know the private addresses of the inside network
 - > Hidden addresses are not routable
 - > The outbound hosts DO NOT know the identity of the NAT router
 - > NAT mapping table

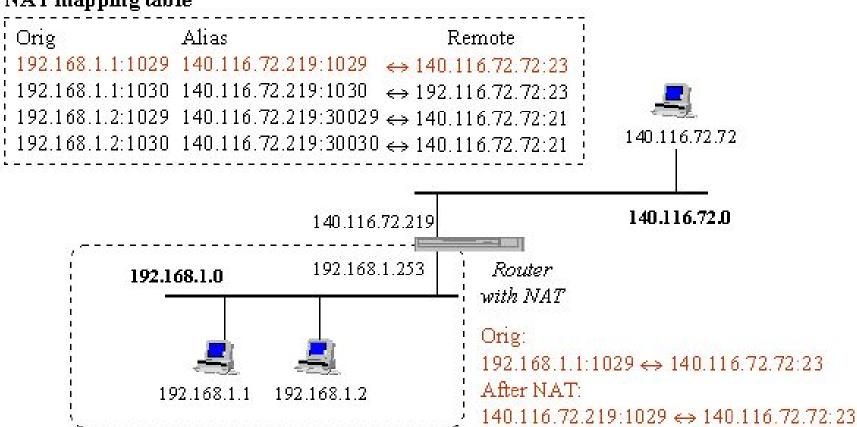
NAT Bidirectional Operation

- Two methods to resolve the hidden address problem
 - Static mapping
 - DNS
 - > RFC 2694, DNS extensions to NAT
- ☐ The basic process is as follows
 - The outside host sends a DNS request using the name of the private host
 - The DNS server for the internal network resolves the name into an inside local address
 - The inside local address is passed to NAT and used to create a dynamic mapping
 - DNS server sends back the name resolution with the inside global address


NAT Bidirectional Operation

NAT Port-Based Operation

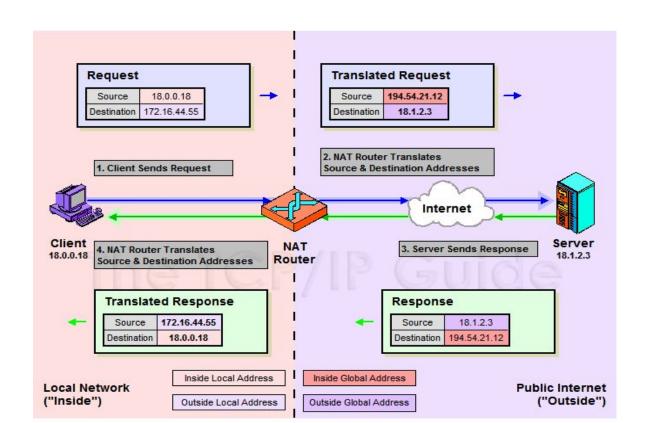
- NAT Port-Based Operation
 - Overloaded operation
 - Network Address Port Translation (NAPT)/Port Address Translation (PAT)
 - Both traditional NAT and bidirectional NAT work by swapping inside network and outside network addresses
 - One-to-one mapping between inside local address and inside global address
 - ➤ Use dynamic address assignment to allow a large number of private hosts to share a small number of registered public addresses
- ☐ Using ports to multiplex private addresses
 - Also translate port addresses
 - Allow 250 hosts on the private network to use only 20 IP address
 - Overloading of an inside global address


NAT Port-Based Operation

NAT Port-Based Operation

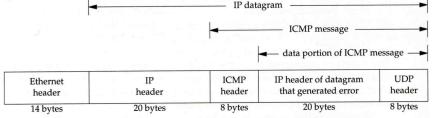
□ NAT example:

NAT mapping table



NAT Overlapping Operation

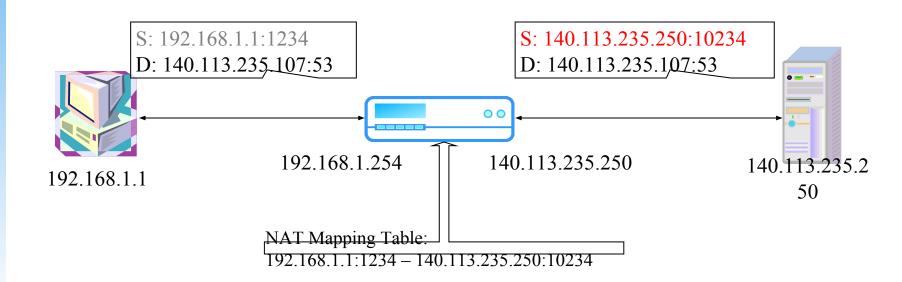
- ☐ NAT Overlapping Operation
 - Twice NAT Operation
 - The previous three versions of NAT are normally used to connect a network using private, non-routable addresses to the public internet
 - > No overlap between the address spaces of the inside and outside network
- Cases with overlapping private and public address blocks
 - Private network to private network connections
 - Invalid assignment of public address space to private network
- ☐ Dealing with overlapping blocks by using NAT twice
 - Translate both the source and destination address on each transition
 - Rely on use of the DNS
 - Let the inside network send requests to the overlapping network in a way that can be uniquely identified


NAT Overlapping Operation

- A client, 18.0.0.18, wants to send a request to the server <u>www.twicenat.mit.edu</u>, 18.1.2.3.
 - 18.0.0.18 sends a DNS request
 - NAT router intercepts this DNS request
 - > Consult its tables to find a special mapping for this outside host
 - NAT router returns 172.16.44.55 to the source client

NAT Compatibility Issues

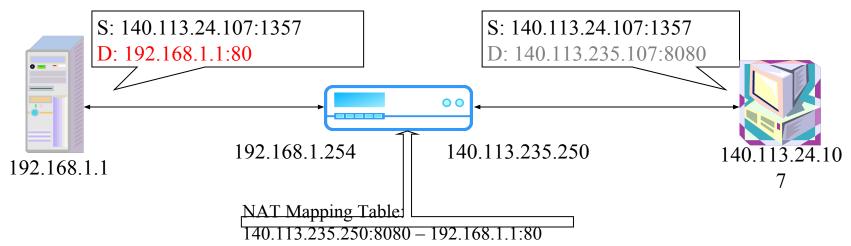
- - ICMP Manipulations



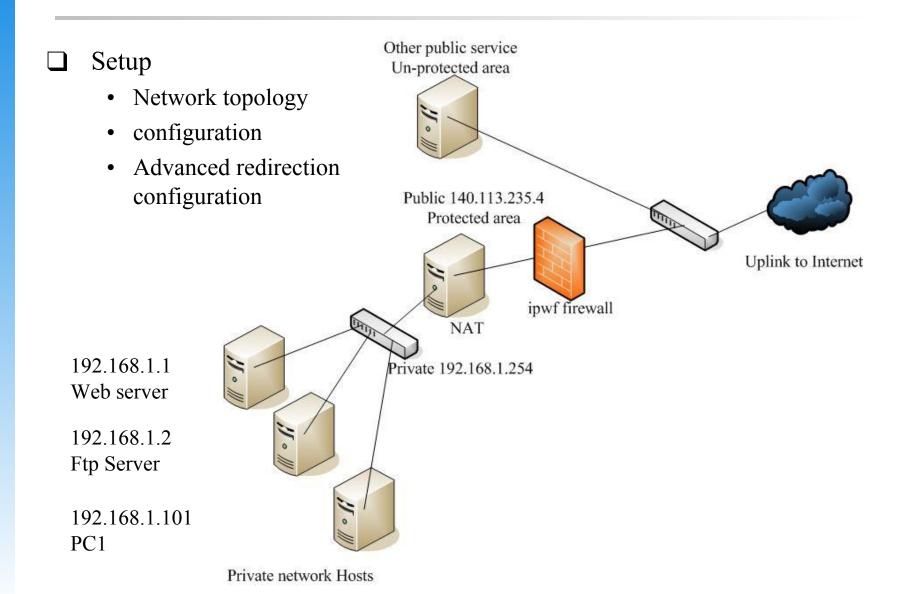
- Applications that embed IP address
 - > FTP
- Additional issues with port translation
 - > The issues applying to addresses now apply to ports as well
- Problems with IPSec

SNAT

☐ SNAT & DNAT


- S: Source D: Destination
- SNAT
 - > Rewrite the source IP and/or Port.
 - ➤ The rewritten packet looks like one sent by the NAT server.

DNAT


DNAT

- Rewrite the destination IP and/or Port.
- The rewritten packet will be redirect to another IP address when it pass through NAT server.

• Both SNAT and DNAT are usually used together in coordination for two-way communication.

NAT on FreeBSD (1)

NAT on FreeBSD (2)

☐ IP configuration (in /etc/rc.conf)

ifconfig_fxp0="inet 140.113.235.4 netmask 255.255.255.0"

ifconfig_fxp1="inet 192.168.1.254 netmask 255.255.255.0"

defaultrouter="140.113.235.254"

☐ Enable NAT

- Here we use Packet Filter (PF) as our NAT server
- Configuration file: /etc/pf.conf
 - > nat
 - > rdr
 - > binat

```
# macro definitions
extdev='fxp0'
intranet='192.168.1.0/24'
webserver='192.168.1.1'
ftpserver='192.168.1.2'
pc1='192.168.1.101'

# nat rules
nat on $extdev inet from $intranet to any -> $extdev
rdr on $extdev inet proto tcp to port 80 -> $webserver port 80
rdr on $extdev inet proto tcp to port 443 -> $webserver port 443
rdr on $extdev inet proto tcp to port 21 -> $ftpserver port 21
```

NAT on FreeBSD (3)

```
# macro definitions
extdev='fxp0'
intranet='192.168.219.0/24'
winxp='192.168.219.1'
server_int='192.168.219.2'
server_ext='140.113.214.13'

# nat rules
nat on $extdev inet from $intranet to any -> $extdev
rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389
binat on $extdev inet from $server_int to any -> $server_ext
```