## **SNMP** Simple Network Management Protocol wangth 國立陽明交通大學資工系資訊中心 ## Network Management - ☐ The network management is to - Monitor the network - Ensure the operations over the network are functional - Assure the network works efficiently - ☐ An ounce of prevention is worth a pound of cure - Something wrong - > Service down, fix the problem, resume the service - Nothing wrong - > Service is somewhat abnormal, try to fix it online - Requirements - FCAPS ## Requirements of Network Management - ☐ Fault Management - Detect, isolate, reconfigurate and repair the abnormal network environment - Problem tracking and control - ☐ Configuration Management - Gather configuration information of network components - ☐ Accounting Management - Track the use of network resources by end-user to provide - > Impropriate usage tracing, charging, statistics - ☐ Performance Management - Capacity utilization, throughput, response time, bottleneck - > Collect information and assess current situation - Security Management - Information protection and access control ### In that time - Network environment is simple - ICMP is the only way to do network investigation - ping, traceroute, .... - ☐ As Internet goes popular, three approaches are proposed: - HEMS: High-level Entity Management System - Considered to be the first network management tools - SGMP and SNMP - > SNMP was an enhanced version of the Simple Gateway Management Protocol - ➤ For TCP/IP-based network management standards - > Supposed to be short-term solution - CMIP over TCP/IP (CMOT) - Common Management Information Protocol - For ISO-based network management standards - Supposed to be long-term solution ### Introduction - □ SNMP Simple Network Management Protocol - A set of standards for network management - > Protocol - > Database structure specification - > Data objects - A set of standardized tools that - Control costs of network management - > Across various product types - End system, bridges, routers, telecommunications, ... - Two roles - ➤ Network management station: SNMP collector, manager - > SNMP agent ## History - □ In 1989 - SNMP was adopted as TCP/IP-based Internet standards - **□** In 1991 - RMON Remote network MONitoring - Supplement to SNMP to include management of LAN and WAN packet flow - □ In 1995 - SNMPv2 (2c) - Functional enhancements to SNMP - > SNMP on OSI-based networks - RMON2 - Network layer and application layer - □ In 1998 - SNMPv3 - Precise definition, but the content is the same as SNMPv2 - > Security capability for SNMP ### The roles in SNMPv3 Dispatcher Message Processing Subsystem Security Subsystem Access Control Subsystem #### Application(s) Dispatcher Generator Command Responder(A) Notification Receiver(M) Notification Originator(M,A) Proxy Forwarder(A) Other(A) ## Network Management System (1) - A collection of tools for - Network monitoring - Network control - ☐ These tools must be integrated - Single operator interface with powerful but user-friendly - Support of managed equipment # Network Management System (2) - ☐ Architecture of NMS - NMA - > Operator interface - NME - > Collect statistics - > Response to NMA - Alert NMA when environment changing # **SNMP Concepts** # SNMP Architecture (2) - □ SNMP - **UDP** - Port 161(snmp) - Port 162(snmp-trap) Internetwork Host Agent process User processes FTP, etc. SNMP UDP TCP IP Router Agent process SNMP UDP IP Network-dependent protocol Host | Agent process | User processes | | | |----------------------------|----------------|--|--| | SNMP | FTP, etc. | | | | UDP | TCP | | | | IP | | | | | Network-dependent protocol | | | | ## SNMP Architecture (3) - ☐ SNMP proxy - Devices that do not support UDP/IP - > e.g., Bridge, Modem - Devices that do not want to add burden of SNMP agent - > e.g., PC, programmable controller #### Management station Proxy agent Proxied device Manager process Mapping function Manager process Manager process SNMP Protocol **SNMP** Protocol UDP architecture used architecture used by proxied device by proxied device UDP IP ΙP Network-dependent Network-dependent Network-dependent Network-dependent protocol protocol protocol protocol 12 ## **SNMP Management Information** - Management Information Base (MIB) - Collection of objects - Each object represents certain resource of managed device - ☐ Interoperability of MIB - Object that represents a particular resource should be the same cross various system - > What objects - ➤ (MIB-I) and MIB-II - Common representation format - > SMI (Structure of Management Information) ## LDAPv3 Overview – LDIF (1/4) - □ LDAP Interchange Format (LDIF) - Defined in RFC 2849 - Standard text file format for storing LDAP configuration information and directory contents - An LDIF file is - 1. A collection of entries separated from each other by blank lines - 2. A mapping of attribute names to values - 3. A collection of directives that instruct the parser how to process the information - The data in the LDIF file must obey the schema rules of your LDAP directory ## SNMP Management Information – SMI (1) #### - Structure of Management Information - Identify the data type that can be used in MIB - How resources are represented and named, including - ➤ MIB structure - > Syntax and value of each object - > Encoding of object value ## SNMP Management Information – SMI (2) - MIB structure - Rooted tree - The leaves are the actual managed objects - > Each object has an identifier (OBJECT IDENTIFIER) - Number with dot as delimiter - > The internet node - iso(1) -> org(3) -> dod(6) -> internet(1) - object identifier of internet node: 1.3.6.1 - > Under internet node - directory(1):OSI X.500 directory - mgmt(2): used for objects defined in IAB (Internet Activities Board) - experimental(3): used for internet experiments - private(4): unilaterally usage # SNMP Management Information – SMI (3) - MIB Tree - Define additional objects - ➤ Under mib-2 - 1.3.6.1.2.1 - > Under experimental - 1.3.6.1.3 - Under enterprises - 1.3.6.1.4.1 ## SNMP Management Information – Object Syntax (1) - Definition of object - Data type - Application-independent type (UNIVERSAL type) - Integer, Octet String, Object Identifier, Null, Sequence, Sequence Of - ➤ Application-wide types (RFC 1155) - NetworkAddress Not used - IpAddress - Counter $(0 \sim 232 1)$ , increasing only, wrap to 0 - Gauge $(0 \sim 232 1)$ - TimeTicks - Opaque (encoded as OCTET STRING for transmission) - Value ranges - Relationship with other objects in MIB ## SNMP Management Information – Object Syntax (2) - □ ASN.1 - Abstract Syntax Notation One - A formal language developed by CCITT and ISO - In SNMP, we use macro to define other types used to define managed objects - ➤ Macro definition (template) - ➤ Macro instance (particular type) - ➤ Macro instance value ## SNMP Management Information – Object Syntax (3) ■ Example: /usr/share/snmp/mibs/BEGEMOT-HOSTRES-MIB.txt ``` -- Additional stuff for the HOST-RESOURCES MIB. BEGEMOT-HOSTRES-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, TimeTicks FROM SNMPv2-SMI begemot FROM BEGEMOT-MIB; begemotHostres MODULE-IDENTITY ::= { begemot 202 } begemotHostresObjects OBJECT IDENTIFIER ::= { begemotHostres 1 } begemotHrStorageUpdate OBJECT-TYPE TimeTicks SYNTAX MAX-ACCESS read-write STATUS current DESCRIPTION "The maximum number of ticks the storage table is cached." ::= { begemotHostresObjects 1 } ``` #### SNMP Management Information – Object Syntax (4) ObjectName, Object Syntax FROM RFC-1155-SMI IMPORTS ■ OBJECT-Type macro ``` OBJECT-TYPE MACRO ::= BEGIN type (TYPE ObjectSyntax) TYPE NOTATION ::= "SYNTAX" "ACCESS" Access "STATUS" Status DescrPart ReferPart IndexPart DefValPart VALUE NOTATION ::= value (VALUE ObjectName) Access ::= "read-only" | "read-write" | "write-only" | "not-accessible" Status ::= "mandatory|"optional"|"obsolete"|"deprecated" DescrPart ::= "DESCRIPTION" value (description DisplayString) | empty ReferPart ::= "REFERENCE" value (reference DisplayString) | empty IndexPart ::= "INDEX" "{" IndexTypes "}" IndexTypes ::= IndexType | IndexTypes "," IndexType --if indexobject, use the SYNTAX IndexType ::= value (indexobject ObjectName) --value of the correspondent -- OBJECT-TYPE invocation --otherwise use named SMI type; type (indextype) --must conform to IndexSyntax below DefValPart ::= "DEFVAL" "{" value (defvalue ObjectSyntax) "}" | empty DisplayString ::= OCTET STRING SIZE (0..255) END IndexSyntax ::= CHOICE { number INTEGER (0..MAX), string OCTET STRING, object OBJECT IDENTIFIER, address NetworkAddress, ``` IpAddress IpAddress } ## SNMP Management Information – Object Syntax (5) - Example of object definition - iso.org.dod.internet.mgmt.mib-2.tcp.tcpMaxConn - 1.3.6.1.2.1.6.4 ``` tcpMaxConn OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The limit on the total number of TCP connections the entity can support. In entities where the maximum number of connections is dynamic, this object should contain the value -1." ::= { tcp 4 } ``` ## SNMP Management Information – Object Syntax (6) - □ 2-D table - Two-dimensional array with scalar-valued entries - Ex: tcpConnTable (RFC1213) ``` tcpConn Table OBJECT-TYPE SEQUENCE OF TcpConnEntry SYNTAX not-accessible ACCESS STATUS mandatory DESCRIPTION "A table containing TCP connection-specific information." ::= { tcp 13 } tcpConnEntry OBJECT-TYPE SYNTAX TcpConnEntry not-accessible ACCESS STATUS mandatory DESCRIPTION "Information about a particular TCP connection. An object of this type is transient, in that it ceases to exist when (or soon after) the connection makes the transition to the CLOSED state." { tcpConnLocalAddress, INDEX tcpConnLocalPort, tcpConnRemAddress, tcpConnRemPort ) ::= { tcpConnTable 1 } TcpConnEntry ::= SEQUENCE { tcpConnState INTEGER, tcpConnLocalAddress IpAddress, tcpConnLocalPort INTEGER (0..65535), tcpConnRemAddress IpAddress tcpConnRemPort INTEGER (0..65535)} ``` ## SNMP Management Information – Object Syntax (7) ``` ::= { tcpConnEntry 1 } tcpConnState OBJECT-TYPE INTEGER (closed (1), SYNTAX tcpConnLocalAddress OBJECT-TYPE listen (2). IpAddress SYNTAX synSent (3), ACCESS read-only synReceived (4), STATUS mandatory DESCRIPTION established (5). "The local IP address for this TCP connection. In the case of a connec- finWaitl (6). tion in the listen state which is willing to accept connections for any finWait2 (7). IP interface associated with the node, the value 0.0.0.0 is used." closeWait (8). ::= { tcpConnEntry 2 } lastAck (9). tcpConnLocalPort OBJECT-TYPE closing (10), SYNTAX INTEGER (0..65535) timeWait (11), ACCESS read-only delete TCB (12) } STATUS mandatory DESCRIPTION ACCESS read-write "The local port number for this TCP connection." STATUS mandatory ::= { tcpConnEntry 3 } DESCRIPTION tcpConnRemAddress OBJECT-TYPE "The state of this TCP connection. SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The remote IP address for this TCP connection." ::= { tcpConnEntry 4 } tcpConnRemPort OBJECT-TYPE SYNTAX INTEGER (0..65535) read-only ACCESS STATUS mandatory DESCRIPTION "The remote port number for this TCP connection." ::= { tcpConnEntry 5 } ``` ## SNMP Management Information – Object Syntax (8) iso (1) -> org (3) -> dod (6) -> internet (1) -> mgmt (2) mib-2 (1) -> tcp (6) -> tcpConnTable(13) ## Standard MIBs ## MIB-II (1) - □ RFC1213 - MIB-I (RFC 1156) - MIB-II is a superset of MIB-I with some additional objects and groups ## MIB-II (2) - ☐ First layer under mib-2 - 1.3.6.1.2.1 (iso.org.dod.internet.mgmt.mib-2) - system - > Overall information about the system - interfaces - > Information about each interface - at - ➤ Address translation (obsolete) - ip, icmp, tcp, udp, egp - transmission - > Transmission schemes and access protocol at each system interface - snmp ## MIB-II system group - **□** sysServices - 1 physical (ex: repeater) - 2 datalink/subnetwork (ex: bridge) - 3 internet (ex: router) - 4 end-to-end (ex: IP hosts) - 7 applications (ex: mail relays) | Object | Syntax | Access | Description sysServices (7) | |-------------|----------------------------|--------|-------------------------------------------------------------------------------------------------| | sysDescr | DisplayString (SIZE(0255)) | RO | A description of the entity, such as hardware, operating system, etc. | | sysObjectID | OBJECT IDENTIFIER | RO | The vendor's authoritative identification of the net-work management subsystem contained in the | | sysUpTime | TimeTicks | RO | The time since the network management portion of the system was last reinitialized | | sysContact | DisplayString (SIZE(0255)) | RW | The identification and contact information of the contact person for this managed node | | sysName | DisplayString (SIZE(0255)) | RW | An administratively assigned name for this managed node | | sysLocation | DisplayString (SIZE(0255)) | RW | The physical location of this node | | sysServices | INTEGER (0127) | RO | A value that indicates the set of services this entity primarily offers | | sys | tem | (mib-2 1) | |-----|-----|-----------------| | | i- | | | } | | sysDescr (1) | | | | sysObjectID (2) | | | å | sysUpTime (3) | | - | | sysContact (4) | | | | sysName (5) | | - | | sysLocation (6) | | Ĺ | ). | sysServices (7) | # MIB-II interface group (1) # MIB-II interface group (2) TABLE 6.2 interfaces Group Objects | Object | Syntax | Access | Description | |-------------------|-------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ifNumber | INTEGER | RO | The number of network interfaces | | ifTable | SEQUENCE OF ifEntry | NA | A list of interface entries | | ifEntry | SEQUENCE | NA | An interface entry containing objects at the subnetwork layer and below for a particular interface | | ifIndex | INTEGER | RO | A unique value for each interface | | ifDescr | DisplayString<br>(SIZE(0255)) | RO | Information about the interface, including name of manufacturer, product name, and version of the hardware interface | | ifType | INTEGER | RO | Type of interface, distinguished according to the physical/link protocol(s) | | ifMtu | INTEGER | RO | The size of the largest protocol data unit, in octets, that can be sent/received on the interface | | ifSpeed | Gauge | RO | An estimate of the interface's current data rate capacity | | ifPhysAddress | PhysAddress | RO | The interface's address at the protocol layer immediately below the network layer | | ifAdminStatus | INTEGER | RW | Desired interface state (up(1), down(2), testing(3)) | | ifOperStatus | INTEGER | RO | Current operational interface state (up(1), down(2), testing(3)) | | ifLastChange | TimeTicks | RO | Value of sysUpTime at the time the interface entered its current operational state | | ifInOctets | Counter | RO | Total number of octets received on the interface, including framing characters | | ifInUcastPkts | Counter | RO | Number of subnetwork-unicast packets delivered to a higher-layer protocol | | ifInNUcastPkts | Counter | RO | Number of nonunicast packets delivered to a higher-layer protocol | | ifInDiscards | Counter | RO | Number of inbound packets discarded, even though no errors had been detected, to prevent their being deliverable to a higher-layer protocol (e.g., buffer overflow) | | ifInErrors | Counter | RO | Number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol | | ifInUnknownProtos | Counter | RO | Number of inbound packets that were discarded because of an unknown or unsupported protocol | | ifOutOctets | Counter | RO | Total number of octets transmitted on the interface, including framing characters | | ifOutUcastPkts | Counter | RO | Total number of packets that higher-level protocols requested be transmitted to a sub-<br>network-unicast address, including those that were discarded or otherwise not sent | | ifOutNUcastPkts | Counter | RO | Total number of packets that higher-level protocols requested be transmitted to a nonunicast address, including those that were discarded or otherwise not sent | | ifOutDiscards | Counter | RO | Number of outbound packets discarded even though no errors had been detected to prevent their being transmitted (e.g., buffer overflow) | | ifOutErrors | Counter | RO | Number of outbound packets that could not be transmitted because of errors | | ifOutQLen | Gauge | RO | Length of the output packet queue | | ifSpecific | OBJECT IDENTIFIER | RO | Reference to MIB definitions specific to the particular media being used to realize the interface | # MIB-II tcp group # MIB-II ip group #### Host Resources MIB ``` □ RFC2790 host OBJECT IDENTIFIER ::= { mib-2 25 } OBJECT IDENTIFIER ::= { host 1 } hrSystem OBJECT IDENTIFIER ::= { host 2 } hrStorage hrDevice OBJECT IDENTIFIER ::= { host 3 } hrSWRun OBJECT IDENTIFIER ::= { host 4 } hrSWRunPerf OBJECT IDENTIFIER ::= { host 5 } hrSWInstalled OBJECT IDENTIFIER ::= { host 6 } hrMIBAdminInfo OBJECT IDENTIFIER ::= { host 7 } ``` # **SNMP Protocol** ### **SNMP Protocol** - ☐ Supported operations - get, getnext, set, getresponse, trap, ... - ☐ Simplicity vs. limitations - Not possible to change the structure of MIB by adding or deleting object instances - Access is provided only to leaf objects ### SNMP Protocol – security concern - ☐ In management environment - The management station and managed agent - One-to-many relationship - > One station may manage all or a subset of target - The managed agent and management station - One-to-many relationship - Each managed agent controls its local MIB and must be able to control the use of that MIB - > Three aspects - Authentication service - Access policy - Proxy service #### SNMP Protocol – communities (1) - ☐ An SNMP community - A relationship between an SNMP agent and a set of SNMP managers that defines - > Authentication, access control and proxy - The managed system establishes one community for each combination of authentication, access control and proxy - Each community has a unique "community name" - Management station use certain community name in all get and set operations #### SNMP Protocol – communities (2) - ☐ Authentication - The community name (password) - ☐ Access policy - Community profile - > SNMP MIB view - A subset of MIB objects - > SNMP access mode - read-only, read-write, write-only, non-accessible #### SNMP Protocol – Where is the security - □ SNMPv3 - User-based Security Model (USM) - Message Authentication - HMAC - ✓ MD5, SHA-1 - ✓ Authentication passphrase, secret key - > Encryption - > CBC-DES - View-based Access Control Model (VACM) - > Context table - > Security to group table - > Access table - > View tree family table ### **BSNMP** mini SNMP daemon #### BSNMP (1) - ☐ A portable SNMP framework consisting of a daemon (bsnmpd), modules and tools - ☐ Enable bsnmpd - /etc/rc.conf ``` bsnmpd enable="YES" ``` - ☐ Configure bsnmpd - /etc/snmpd.config - ☐ Start bsnmpd - /etc/rc.d/bsnmpd start - Firewall allows - snmpd: udp 161 - snmptrapd: udp 162 ``` location := "Room 200" contact := "sysmeister@example.com" system := 1 # FreeBSD traphost := localhost trapport := 162 # Change this! read := "public" # Host resources module This requires the mibII module. #begemotSnmpdModulePath."hostres" = "/usr/lib/snmp hostres.so" ``` #### BSNMP (2) - □ bsnmp-ucd - bsnmpd module that implements parts of UCD-SNMP-MIB - The counters will be available under the following MIB: .1.3.6.1.4.1.2021 (UCD-SNMP-MIB::ucdavis) - ☐ Install bsnmp-ucd - net-mgmt/bsnmp-ucd - ☐ Configure bsnmpd - /etc/snmpd.config begemotSnmpdModulePath."ucd" = "/usr/local/lib/snmp ucd.so" - ☐ Restart bsnmpd - ☐ Other bsnmp modules - bsnmp-jails - bsnmpd module to measure statistics about jails - bsnmp-regex - bsnmpd module allowing creation of counters from log files #### **Net-SNMP** previously known as "ucd-snmp" 國立陽明交通大學資工系資訊中心 #### Net-SNMP (1) - ☐ Install net-snmp - net-mgmt/net-snmp - # make [OPTIONS] install clean ``` DEFAULT_SNMP_VERSION="3" Default version of SNMP to use. NET_SNMP_SYS_CONTACT="nobody@nowhere.invalid" Default system contact. NET_SNMP_SYS_LOCATION="somewhere" Default system location. NET_SNMP_LOGFILE="/var/log/snmpd.log" Default log file location for snmpd. NET_SNMP_PERSISTENTDIR="/var/net-snmp" Default directory for persistent data storage. ``` - Firewall allows - > snmpd: udp 161 - > snmptrapd: udp 162 #### Net-SNMP (1) ☐ After installing... /usr/local/share/snmp/snmpd.conf.example ``` # Full access from the local host # rocommunity public localhost # Default access to basic system info rocommunity public default -V systemonly ``` #### Net-SNMP (3) - ☐ Use snmpconf command to generate the configuration files - snmpconf -g basic\_setup - snmpconf - System Information Setup - Location, contact, service - Access Control Setup - SNMPv3 or SNMPv1 access community - > Trap Destination - Where to send the trap - Monitor Various Aspects of the Running Host - Process, disk space, load, file - > Extending the Agent - Let snmp agent to return information that yourself define - > Agent Operating Mode - User/group, IP port,... #### Net-SNMP (4) - ☐ To get various value - man snmpget, snmpgetnext, snmptable - % snmpget -c public -v 1 nasa system.sysContact.0 - % snmpgetnext -c public -v 1 nasa system.sysContact.0 - % snmptable -c public -v 1 nasa mib-2.tcp.tcpConnTable - % snmpwalk -c public -v 1 nasa system - % snmpwalk -c public -v 1 nasa iso.org.dod.internet.private.enterprises # Appendix Cacti #### Cacti(1) #### □ About - Cacti is a complete network graphing solution designed to harness the power of RRDTool's data storage and graphing functionality. - Cacti provides a fast poller, advanced graph templating, multiple data acquisition methods, and user management features out of the box. - All of this is wrapped in an intuitive, easy to use interface that makes sense for LAN-sized installations up to complex networks with hundreds of devices. #### ☐ Install cacti /usr/ports/net/cacti ### Cacti(2) #### **Cacti Installation Guide** Thanks for taking the time to download and install cacti, the complete graphing solution for your network. Before you can start making cool graphs, there are a few pieces of data that cacti needs to know. Make sure you have read and followed the required steps needed to install cacti before continuing. Install information can be found for <u>Unix</u> and <u>Win32</u>-based operating systems. Also, if this is an upgrade, be sure to reading the <u>Upgrade</u> information file. Cacti is licensed under the GNU General Public License, you must agree to its provisions before continuing: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Next >> ## Cacti(3) #### **Cacti Installation Guide** Please select the type of installation New Install The following information has been determined from Cacti's configuration file. If it is not correct, please edit 'include/config.php' before continuing. Database User: cactiuser Database Hostname: localhost Database: cacti Server Operating System Type: unix Next >> # Cacti(4) | Cacti Installation Guide | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Make sure all of these values are correct before continuing. | | NOT FOUND] RRDTool Binary Path: The path to the rrdtool binary. | | /opt/bin/rrdtool | | ERROR: FILE NOT FOUND] | | <b>FOUND] PHP Binary Path:</b> The path to your PHP binary file (may require a phrecompile to get this file). | | /usr/bin/php | | OK: FILE FOUND] | | NOT FOUND] snmpwalk Binary Path: The path to your snmpwalk binary. | | /opt/bin/snmpwalk | | ERROR: FILE NOT FOUND] | | NOT FOUND] snmpget Binary Path: The path to your snmpget binary. | | /opt/bin/snmpget | | ERROR: FILE NOT FOUND] | | NOT FOUND] snmpbulkwalk Binary Path: The path to your snmpbulkwalk binary. | | /opt/bin/snmpbulkwalk | | ERROR: FILE NOT FOUND] | | NOT FOUND] snmpgetnext Binary Path: The path to your snmpgetnext binary. | | /opt/bin/snmpgetnext | | ERROR: FILE NOT FOUND] | | FOUND] Cacti Log File Path: The path to your Cacti log file. | | /volume1/web/cacti/log/cacti.log | | OK: FILE FOUND] | | SNMP Utility Version: The type of SNMP you have installed. Required if you are using SNMP v2c or don't have embedded SNMP support in PHP. NET-SNMP 5.x | | NOTE: Once you click "Finish", all of your settings will be saved and your database will be upgraded if this is an upgrade. You can change any of the settings on this screen at a later time by going to "Cacti Settings" from within Cacti. | | Finish | | | ### Cacti(5) Please enter your Cacti user name and password below: User Name: cactiuser Password: •••••• Login - ☐ Default account/pwd - admin/admin # Cacti(6) ## Cacti(7)