
Chapter 4
Controlling Processes

2

Program to Process

> Program is dead
– Just lie on disk
– grep is a program

• /usr/bin/grep
• % file /usr/bin/grep

> ELF 32-bit LSB executable

> When you execute it
– It becomes a process

> Process is alive
– It resides in memory

3

ELF

>Executable and Linkable Format

.text
CPU instructions

.bss
un-initialized data

.data
initialized data

Into Memory

4

Components of a Process

>An address space in memory
– Code and data of this process

>A set of data structures within the
kernel
– Used to monitor, schedule, trace, …., this process

• owner
• Current status
• Execution priority
• Information of used resource
• Signal mask

5

Components of a Process –
address space in memory (1)

gcc

6

Components of a Process –
address space in memory (2)

7

Components of a Process –
data structure in kernel (1)

>In OS, we call these as PCB
– Process Control Block

8

Components of a Process –
data structure in kernel (2)

>FreeBSD
– /usr/include/sys/proc.h
– struct proc

struct task_struct
{

…
pid_t pid;
pid_t pgrp;
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
char comm[16];
…

}

struct proc
{

…
pid_t p_pid;
struct pcred *p_cred;
…

}

>Linux
– /usr/include/linux/sched.h
– struct task_struct

struct pcred
{

…
uid_t p_ruid, p_svuid;
gid_t p_rgid,p_svgid;
…

}

9

Attributes of the Process

>PID, PPID
– Process ID and parent process ID

>UID, EUID
– User ID and Effective user ID

>GID, EGID
– Group ID and Effective group ID

>Niceness
– The suggested priority of this process

10

Attributes of the process –
PID and PPID

> PID – process id
– Unique number assigned for each process in

increasing order when they are created
> PPID – parent PID

– The PID of the parent from which it was
cloned

– UNIX uses fork-and-exec model to create new
process

11

Attributes of the process –
UID、GID、EUID and EGID

>UID, GID, EUID, EGID
– The effective uid and gid can be used to enable or

restrict the additional permissions
– Effective uid will be set to

• Real uid if setuid bit is off
• The file owner’s uid if setuid bit is on

Ex:
/etc/master.passwd is “root read-write only” and
/usr/bin/passwd is a “setuid” program

12

Process Lifecycle

> fork
– child has the same program context

> exec
– child use exec to change the

program context
> exit

– child use _exit to tell kernel that it
is ready to die and this death
should be acknowledged by the
child’s parent

> wait
– parent use wait to wait for child’s

death
– If parent died before child, this

orphan process will have init as it’s
new parent

13

Signal

> A way of telling a process something has happened
> Signals can be sent

– among processes as a means of communication
– by the terminal driver to kill, interrupt, or suspend process

• <Ctrl-C>、<Ctrl-Z>

– by the administrator to achieve various results
– by the kernel when a process violate the rules, such as divide by zero

14

Actions when receiving signal

> Depend on whether there is a designated
handler routine for that signal
1. If yes, the handler is called
2. If no, the kernel takes some default action

> “Catching” the signal
– Specify a handler routine for a signal within a program

> Two ways to prevent signals from arriving
1. Ignored

– Just discard it and there is no effect to process

2. Blocked
– Queue for delivery until unblocked
– The handler for a newly unblocked signal is

called only once

15

UNIX signals

> man signal or see /usr/include/sys/signal.h

IgnoreContinue after stopSIGCONT19

StopStop from tty (^Z)SIGTSTP18

StopStopSIGSTOP17

TerminateSoft. terminationSIGTERM15

TerminateSegmentation faultSIGSEGV11

TerminateBus errorSIGBUS10

TerminateKillSIGKILL9

TerminateQuit SIGQUIT3

TerminateInterrupt (^C)SIGINT2

TerminateHangupSIGHUP1

Dump
coreBlockCatchDefaultDescriptionName#

FreeBSD

16

Kill – send signals

>% kill [-signal] pid
– Ex:

• First, find out the pid you want to kill

• % kill –l (list all available signals)
• % kill 49222
• % kill –TERM 49222
• % kill –15 49222

17

Process States

> man ps and see
“state” keyword

in Disk D

ZombieZ

StoppedT

SleepingS

RunnableR

IdleI

MeaningState

18

Niceness

>How kindly of you when contending
CPU time
– High nice value low priority

>Inherent Property
– A newly created process inherits the nice value of its

parent
• Prevent processes with low priority from

bearing high-priority children

>Root has complete freedom in setting
nice value
– Use nice to start a high-priority shell to beat berserk

process

19

nice and renice commands

>nice format
– OS nice : % /usr/bin/nice [range] utility [argument]
– csh nice : % nice [range] utility [argument]

• % nice +10 ps -l

>renice format
– % renice [prio | -n incr] [–p pid] [–g gid] [-u user]

• % renice 15 –u tytsai

prio+prio | -prio-incr-20 ~ 19SunOS

prio | -n incr+incr | -incr-incr | -n incr0 ~ 39Solaris

prio+prio | -prio-incr | -n incr-20 ~ 20Red Hat

prio | -n incr+prio | -prio-incr | -n incr-20 ~ 20FreeBSD

renicecsh niceOS nicePrio. RangeSystem

20

ps command (BSD、Linux)

>ps

>ps aux

>ps auxww

tytsai@tybsd:~> ps
PID TT STAT TIME COMMAND
125 p0 Ss 0:00.03 -tcsh (tcsh)
139 p0 R+ 0:00.00 ps

tytsai@tybsd:~> ps aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 0 0.0 0.0 0 0 ?? DLs 4:50PM 0:00.00 (swapper)
tytsai 125 0.0 0.2 1456 1128 p0 Ss 8:52AM 0:00.04 -tcsh (tcsh)
tytsai 124 0.0 0.4 5296 2304 ?? S 8:52AM 0:00.01 sshd: tytsai@ttyp
root 89 0.0 0.4 3144 2324 ?? Ss 8:50AM 0:00.02 sendmail: accepti

tytsai@tybsd:~> ps auxww
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 89 0.0 0.4 3144 2324 ?? Ss 8:50AM 0:00.02 sendmail: accepti
g connections (sendmail)

21

ps command –
Explanation of ps –aux (BSD、Linux)

22

ps command (BSD、Linux)

>ps –j

>ps –o

>ps -L

tytsai@tybsd:~> ps -j
USER PID PPID PGID SESS JOBC STAT TT TIME COMMAND
tytsai 125 124 125 c2053500 0 Ss p0 0:00.06 -tcsh (tcsh)
tytsai 205 125 205 c2053500 1 R+ p0 0:00.00 ps -j

tytsai@tybsd:~> ps -o uid,pid,ppid,%cpu,%mem,command
UID PID PPID %CPU %MEM COMMAND
1001 125 124 0.0 0.2 -tcsh (tcsh)
1001 237 125 0.0 0.1 ps -o uid,pid,ppid,%cpu,%mem,command

tytsai@tybsd:~> ps -L
%cpu %mem acflag acflg blocked caught command cpu cputime f flags ignored inblk
inblock jobc ktrace ktracep lim login logname lstart majflt minflt msgrcv msgsnd
ni nice nivcsw nsignals nsigs nswap nvcsw nwchan oublk oublock p_ru paddr pagein
pcpu pending pgid pid pmem ppid pri re rgid rlink rss rssize rsz rtprio ruid
ruser sess sig sigcatch sigignore sigmask sl start stat state svgid svuid tdev
time tpgid tsess tsiz tt tty ucomm uid upr user usrpri vsize vsz wchan xstat

23

top command

> Various usage
– top –q run top and renice it to -20
– top –u don’t map uid to username
– top –Uusername show process owned by user

> Interactive command
– o change display order
– u show only processes owned by user

last pid: 49993; load averages: 0.00, 0.01, 0.00 up 20+06:54:04 21:25:22
59 processes: 1 running, 58 sleeping
CPU states: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
Mem: 30M Active, 265M Inact, 153M Wired, 48K Cache, 199M Buf, 1562M Free
Swap: 1024M Total, 1024M Free

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND
201 mysql 2 0 36640K 16660K poll 0 4:45 0.00% 0.00% mysqld
129 root 2 0 596K 360K select 0 2:22 0.00% 0.00% natd
205 root 2 0 3164K 2492K select 0 0:38 0.00% 0.00% httpd

24

Runaway process

>Processes that use up excessive
system resource or just go berserk
– kill –STOP for unknown process
– renice it to a higher nice value for reasonable

process

