Chapter 8 Adding a Disk

Disk Interface

- □ SCSI
 - Small Computer Systems Interface
 - High performance and reliability
- ☐ IDE (or ATA)
 - Integrated Device Electronics (or AT Attachment)
 - Low cost
 - Become acceptable for enterprise with the help of RAID technology
- □ SATA
 - Serial ATA
- \Box SAS
 - Serial Attached SCSI
- ☐ USB
 - Universal Serial Bus
 - Convenient to use

Disk Interface – SCSI Interface Evolution

Version	Freq.	Width	Speed	Length	Diff.
SCSI-1	5MHz	8 bits	5MB/s	6m	25m
SCSI-2	5MHz	8 bits	5MB/s	6m	25m
SCSI-2 Fast	10MHz	8 bits	10MB/s	3m	25m
SCSI-2 Fast Wide	10MHz	16 bits	20MB/s	3m	25m
Ultra SCSI	20MHz	8 bits	20MB/s	1.5m	25m
Ultra Wide SCSI	20MHz	16 bits	40MB/s	1.5m	25m
Ultra2 SCSI	40MHz	16 bits	80MB/s	-	12m
Ultra160 SCSI	80MHz	16 bits	160MB/s	-	12m
Ultra320 SCSI	160MHz	16 bits	320MB/s	-	12m

Disk Interface — SCSI Interface Connector

Centronics

50 pins, SCSI-1/2, external

Ribbon connector (female)

50 pins, SCSI-1/2, internal

Mini-micro, aka HD50

50 pins, SCSI-2, external

Wide mini-micro, aka HD68

68 pins, SCSI-2/3, int/ext

SCA-2

80 pins, SCSI-3, internal

Disk Interface – SCSI Interface

- ☐ Daisy chain on SCSI bus
 - Most external devices have two SCSI ports
 - Terminator
- ☐ Each SCSI device has a SCSI ID

Disk Interface – ATA & SATA

- ☐ ATA (AT Attachment)
 - ATA2
 - > PIO, DMA
 - ➤ LBA (Logical Block Addressing)
 - ATA3, Ultra DMA/33/66/100/133
 - ATAPI (ATA Packet Interface)
 - > CDROM, TAP
 - Only one device can be active at a time
 - > SCSI support overlapping commands, command queuing, scatter-gather I/O
 - Master-Slave
 - 40-pin ribbon cable
- \Box SATA
 - Serial ATA

Disk Interface – ATA & SATA Interface

☐ ATA interface and it's cable

☐ SATA interface and it's cable

Disk Interface – SAS

- ☐ SAS Serial Attached SCSI
- ☐ SAS vs parallel SCSI
 - SAS uses Serial transfer protocol to interface multiple devices hence lesser signaling overhead than parallel SCSI, resulting in higher speed.
 - No bus contention as SAS bus is <u>point-to-point</u> while SCSI bus is <u>multidrop</u>. Each device is connected by a dedicated bus to the initiator. Connection through expanders may appear to cause some contention, but this is transparent to the initiator.
 - SAS has no <u>termination</u> issues and does not require terminator packs like parallel SCSI.
 - SAS eliminates skew.
 - SAS supports <u>higher number of devices</u> (> 16384) while Parallel SCSI limits it to 16 or 32.
 - SAS supports higher transfer speed (1.5, 3.0 or 6.0 Gbps). The speed is realized on each initiator-target connection, hence higher throughput whereas in parallel SCSI the speed is shared across the entire multidrop bus.
 - SAS <u>supports SATA devices</u>.
 - SAS uses SCSI commands to interface with SAS End devices.

Disk Interface – USB

☐ USB to IDE/SATA
Converter

Disk Geometry (1)

- □ sector
 - Individual data block
- ☐ track
 - circle
- ☐ cylinder
 - circle on all platters
- ☐ Position
 - CHS
 - Cylinder, Head, Sector

Disk Geometry (2)

□ 40G HD

- 4866 cylinders, 255 heads
- 63 sectors per track, 512 bytes per sector

•
$$512 * 63 * 4866 * 255 = 40,024,212,480$$
 bytes

- 1KB = 1024 bytes
- 1MB = 1024 KB = 1,048,576 bytes
- 1GB = 1024 MB = 1,073,741,824bytes
- 42,278,584,320 / 1,073,741,824 = 39.375 GB

Disk Installation Procedure (1)

- ☐ The procedure involves the following steps:
 - Connecting the disk to the computer
 - > IDE: master/slave
 - > SCSI: ID, terminator
 - > power
 - Creating device files
 - >/dev
 - > Now auto created by devfs (man defvs)
 - Formatting the disk
 - **Low-level format**
 - Address information and timing marks on platters
 - bad sectors
 - > Manufacturer diagnostic utility

Disk Installation Procedure (2)

- Partitioning and Labeling the disk
 - > Allow the disk to be treated as a group of independent data area
 - > root, home, swap partitions
 - **Suggestion:**
 - /var, /tmp → separate partition
 - Make a copy of root filesystem for emergency
- Establishing logical volumes
 - > Combine multiple partitions into a logical volume
 - **➤** Software RAID technology
 - FreeBSD (gvinum)
 - Linux (Linux LVM)
 - Sun (Solstice Disk Suite)

Disk Installation Procedure (3)

- Creating UNIX filesystems within disk partitions
 - ➤ Use "newfs" to install a filesystem for a partition
 - > Filesystem components
 - A set of inode storage cells
 - A set of data blocks
 - A set of superblocks
 - A map of the disk blocks in the filesystem
 - A block usage summary

Disk Installation Procedure (4)

- > Superblock contents
 - The length of a disk block
 - Inode table's size and location
 - Disk block map
 - Usage information
 - Other filesystem's parameters
- ★ sync system call

Flush the cashed superblocks in-memory copy to the permanent place in disk

Disk Installation Procedure (5)

mount

- > Bring the new partition to the filesystem tree
- > mount point can be any directory
- > % mount /dev/ad1s1e /home2
- Setting up automatic mounting
 - > Automount at boot time
 - /etc/fstab
 - % mount –t ufs /dev/ad2s1a /backup
 - % mount -t cd9600 -o ro,noauto /dev/acd0c /cdrom

chwong@sabsd:/etc> less fstab								
# Device	Mountpoint	FStype	Options	Dump	Pass#			
/dev/ad0s1b	none	swap	SW	0	0			
/dev/ad2s1b	none	swap	SW	0	0			
/dev/ad0s1a	/	ufs	rw	1	1			
/dev/acd0c	/cdrom	cd9660	ro,noauto	0	0			
proc	/proc	procfs	rw	0	0			
/dev/ad2s1a	/backup	ufs	rw,noauto	1	1			
ccduty:/bsdhome	/bsdhome	nfs	rw,noauto	0	0			

Disk Installation Procedure (6)

- Setting up swapping on swap partitions
 - > swapon command

fsck -

check and repair filesystem (1)

- ☐ System crash will cause
 - Inconsistency between memory image and disk contents
- \Box fsck -p
 - Examine all local filesystem listed in /etc/fstab at boot time
 - Automatically correct the following damages:
 - Unreferenced inodes
 - ➤ Inexplicably large link counts
 - > Unused data blocks not recorded in block maps
 - > Data blocks listed as free but used in file
 - ➤ Incorrect summary information in the superblock

fsck -

check and repair filesystem (2)

- ☐ Run fsck in manual to fix serious damages
 - Blocks claimed by more than one file
 - Blocks claimed outside the range of the filesystem
 - Link counts that are too small
 - Blocks that are not accounted for
 - Directories that refer to unallocated inodes
 - Other errors
- ☐ fsck will suggest you the action to perform
 - Delete, repair, ...

Adding a disk to FreeBSD (1)

- 1. Check disk connection
 - > Look system boot message

ad3: 16383MB < Virtual HD> [33288/16/63] at ata1-slave WDMA2

- 2. Use /stand/sysinstall to install the new HD
 - > Configure \rightarrow Fdisk \rightarrow Label
 - > Don't forget to "W" the actions
- 3. Make mount point and mount it
 - > % mkdir /home2
 - > % mount -t ufs /dev/ad3s1e /home2
 - > % df
- 4. Edit /etc/fstab

Adding a disk to FreeBSD (2)

- ☐ If you forget to enable soft-update when you add the disk
 - % umount /home2
 - % tunefs –n enable /dev/ad3s1e
 - % mount –t ufs /dev/ad3s1e /home2
 - % mount

/dev/ad0s1a on / (ufs, local, soft-updates)
/dev/ad1s1e on /home (ufs, local, soft-updates)
procfs on /proc (procfs, local)
/dev/ad3s1e on /home2 (ufs, local, soft-updates)

RAID (1/2)

- ☐ Redundant Array of Inexpensive Disks
 - A method to combine several physical hard drives into one logical unit
- ☐ Depending on the type of RAID, it has the following benefits:
 - Fault tolerance
 - Higher throughput
 - Real-time data recovery
- ☐ RAID Level
 - RAID 0, 1, 0+1, 2, 3, 4, 5, 6
 - Hierarchical RAID

RAID (2/2)

- ☐ Hardware RAID
 - There is a dedicate controller to take over the whole business
 - RAID Configuration Utility after BIOS
 - > Create RAID array, build Array
- ☐ Software RAID
 - > FreeBSD (gvinum)
 - **► Linux (Linux LVM)**
 - **>** Sun (Solstice Disk Suite)

- ☐ Stripped data intro several disks
- ☐ Minimum number of drives: 2
- ☐ Advantage
 - Performance increase in proportional to n theoretically
 - Simple to implement
- ☐ Disadvantage
 - No fault tolerance
- ☐ Recommended applications
 - Non-critical data storage
 - Application requiring high bandwidth (such as video editing)

- ☐ Mirror data into several disks
- ☐ Minimum number of drives: 2
- ☐ Advantage
 - 100% redundancy of data
- ☐ Disadvantage
 - 100% storage overage
 - Moderately slower write performance
- ☐ Recommended application
 - Application requiring very high availability (such as home)

RAID 0+1

- ☐ Combine RAID 0 and RAID 1
- ☐ Minimum number of drives: 4

- ☐ Hamming Code ECC Each bit of data word
- ☐ Advantages:
 - "On the fly" data error correction
- ☐ Disadvantages:
 - Inefficient
 - Very high ratio of ECC disks to data disks
- ☐ Recommended Application
 - No commercial implementations exist / not commercially viable

- ☐ Parallel transfer with Parity
- ☐ Minimum number of drives: 3
- ☐ Advantages:
 - Very high data transfer rate
- ☐ Disadvantages:
 - Transaction rate equal to that of a single disk drive at best
- ☐ Recommended Application
 - Any application requiring high throughput

- ☐ Similar to RAID3
- □ RAID 3 V.S RAID 4
 - Byte Level V.S Block Level

- ☐ Independent Disk with distributed parity blocks
- ☐ Minimum number of drives: 3
- ☐ Advantage
 - Highest read data rate
 - Medium write data rate
- ☐ Disadvantage
 - Disk failure has a medium impact on throughput
 - Complex controller design
 - When one disk failed, you have to rebuild the RAID array

- ☐ Similar to RAID5
- ☐ Minimum number of drives: 4
- □ 2 parity checks, 2 disk failures tolerable.