Controlling Processes

tsaimh (2022-2025, CC BY-SA)
wangth (2017-2021, CC BY-SA)

Ll b EGIARBABE T HEMDL

Information Technology Center of Department of Computer Science, NYCU

Handbook and Manual pages

e Official guide and be found at
o https://www.freebsd.org/doc/en/books/handbook/basics-
processes.html
o https://www.freebsd.org/doc/zh_TW/books/handbook/basics-
processes.htmli

https://www.freebsd.org/doc/en/books/handbook/basics-processes.html
https://www.freebsd.org/doc/zh_TW/books/handbook/basics-processes.html

Program to Process ro:

e Program Is dead “

o Just lie on disk PID 424
o "grep" is a program o
m /usr/bin/grep
B S file /usr/bin/grep
e ELF 32-bit LSB executable
e [Executable and Linkable Format

e \When you execute It
o |t becomes a process
e Process Is alive
o It resides in memory

PID 424
exec

PID 424 PID 563
exec exec

Q 3

Components of a Process

e An address space in memory
o Code and data of this process

e A set of data structures within the kernel

o Used to monitor, schedule, trace,, this process
m Owner, Group (Credentials)

Current status

VM space

Execution priority (scheduling info)

Information of used resource

Resource limits

Syscall vector

Signal actions 4
D e L L D TR T F T T P R TP TP T T

Attributes of the Process

e PID, PPID
o Process ID and parent process ID

e UID, EUID
o User ID and Effective user ID

e GID, EGID
o Group ID and Effective group ID

e Niceness
o The suggested priority of this process

Attributes of the Process — e pisims masis

| am child, pid is 1486, ppid is 1485
P I D d P P I D #include <stdio.h> | am parent, pid is 1485, ppid is 1125
a n #include <stdlib.h> | am child, p|d-|s ‘1486, ppld.ls‘1485
#includ istd.h | am parent, pid is 1485, ppid is 1125
Include <unistd.h> | am child, pid is 1486, ppid is 1485

- int main(){ am child, pid is , ppid is
® PI D — prOCGSS Id int pid, i; : am paren'E pid ils4184685ripppid ils4181525
i i | am child, pid is 1486, ppid is 1485
o Unique number assigned pid = fork(); | am parent, pid is 1485, ppid is 1125
. if(pid ==0) {
for each process in for (int i=0; i<5; i++)
. : {
|ncreaS|ng Order When printf("l am child, pid is %d, ppid is %d\n",
tpid(), getppid());
they are created goepny, o Pl EetepIdl)

e PPID — parent PID (1)

lelse if (pid >0) {

o The PID of the parent for (int i=0; i<5; i++)

i - {
frOm Wh|Ch |t Was Cloned printf("l am parent, pid is %d, ppid is %d\n",

b ol s . b
o UNIX uses fork-and-exec — geepny, o0 PP

model to create new o if (oid <O)
printf("Something wrong while forking\n");
proceSS return O; 5
}

Process Lifecycle

o fork
o child has the same program context — fork(2)

® c€XeC
o child use exec to change the program context — execve(2)

e exit

o child use _exit to tell kernel that it is ready to die and this death
should be acknowledged by the child’s parent — _exit(2)

e walit
o parent use wait to wait for child’s death

o If parent died before child, this orphan process will have init as it’s
new parent — walit(2)

https://www.freebsd.org/cgi/man.cgi?fork(2)
https://www.freebsd.org/cgi/man.cgi?execve(2)
https://www.freebsd.org/cgi/man.cgi?_exit(2)
https://www.freebsd.org/cgi/man.cgi?wait(2)

of the process -

UID ~ GID ~ EUID and EGID
e UID, GID, EUID, EGID

o The effective uid and gid can be used to enable or restrict the
additional permissions

o Effective uid will be set to
m Real uid if setuid bit is off

m The file owner’s uid If setuid bit is on

o Example

B /etc/master.passwd is "root read-write only"
B /usr/bin/passwd is a "setuid root" program

% Lls -al /etc | grep passwd
-TW------- 1 root wheel 2946 Sep 24 00:26 master.passwd
-rW-r--r-- 1 root wheel 2706 Sep 24 00:26 passwd
% ls -al /usr/bin/passwd
-r-sr-xr-x 2 root wheel 5860 Sep 17 15:19 passwd 8

Signal

e A way of telling a process something has happened

e Signals can be sent
o Among processes as a means of communication

o By the terminal driver to kill, interrupt, or suspend process
m <Ctrl-C> ~ <Ctrl-Z>
m bg, fg

o By the administrator to achieve various results
m With Kill(1)

o By the kernel when a process violate the rules

m divide by zero
m lllegal memory access

https://www.freebsd.org/cgi/man.cgi?kill(1)

Signal - Actions when receiving signal

e Depend on whether there Is a designated handler routine for that
signal
o If yes, the handler is called
o If no, the kernel takes some default action
e "Catching" the signal
o Specify a handler routine for a signal within a program
e Two ways to prevent signals from arriving

o Ignored
m Just discard it and there is no effect to process
o Blocked

m Queue for delivery until unblocked
m The handler for a newly unblocked signal is called only once 10

Signal - FreeBSD signals

e signal(3) or see /usr/include/sys/signal.h

e FreeBSD

| Name Description Default Catch Block Dump Core
1 | SIGHUP Hangup Terminate v v X
2 | SIGINT Interrupt (*C) Terminate v v X
3 | SIGQUIT Quit Terminate v v v
9 | SIGKILL Kill Terminate X X X
10 | SIGBUS Bus error Terminate v v v
11 | SIGSEGV Segmentation fault Terminate v v v
15 | SIGTERM Soft. termination Terminate v v X
17 | SIGSTOP Stop Stop X X X
18 | SIGTSTP Stop from tty (*2) Stop v v X
19 | SIGCONT | Continue after stop Ignore v X X

11

Signal - Send signals: kill
e Kill(1) —terminate or signal a process
e 5 kill [-signal] pid

o EX.

m First, find out the pid you want to kill
e (ps, top, sockstat, Isof...)

m $kill -1 (list all available signals)
m $Kkill 49222 ~_
m S kill -TERM 49222 —— the same
m $kill -15 49222 —
o Kkillall(1)
m Kill processes by name
m $killall tcsh

m 9 killall -u tsaimh

https://www.freebsd.org/cgi/man.cgi?kill(1)
https://www.freebsd.org/cgi/man.cgi?killall(1)

Niceness

e How kindly of you when contending CPU time
o High nice value = low priority
o Related to CPU time guantum

e Inherent Property

o A newly created process inherits the nice value of its parent
m Prevent processes with low priority from bearing high-priority children

e Root has complete freedom In setting nice value
o Use "nice" to start a high-priority shell to beat berserk process

Niceness - nice and renice

e nice(1) format
o OS nice : $ /usr/bin/nice [range] utility [argument]
o csh nice(built-in) : $ nice [range] utility [argument]
m $nice +10 ps -
e renice(8) format
o $renice [prio | -n incr] [-p pid] [-g gid] [-u user]
m $renice 15 -u chwong

System Prio. Range OS nice csh nice renice
FreeBSD -20~ 20 -incr | -n incr +prio | -prio prio | -n incr
Red Hat -20~ 20 -incr | -n incr +prio | -prio prio

Solaris 0~39 -incr | -n incr +incr | -incr prio | -n incr
SunOS -20~19 -incr +prio | -prio prio

https://www.freebsd.org/cgi/man.cgi?nice(1)
https://www.freebsd.org/cgi/man.cgi?renice(8)

cpuset command (1/2)

e A system may have more than one CPU core

e How many CPU resource a process can use
e cpuset(1)

https://www.freebsd.org/cgi/man.cgi?cpuset(1)

cpuset command (2/2)

e To see how many CPUs on your machine
o $cpuset -g

S cpuset -g
pid -1 mask: 0,1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15

e Run commands with less CPUs
o $ cpuset -l cpus cmd
$ cpuset -1 8-15 ./hwl.out
e Change number of CPUs for current processes
o $ cpuset -l cpus -p pid
$ cpuset -l 8-15 -p 5566
e Combine with nice
o $ cpuset -1 8-15 /usr/bin/nice -n 20 cmd y
D e L L D TR T F T T P R TP TP T T

Process States

e man "ps" and see "state" keyword

State Meaning
I Idle (20+ second)

Runnable

Sleeping (~20 second)

Stopped

Zombie

in Disk

O N|Hd| 0| XD

ps command (BSD * Linux)

® S

S ps

PID TT STAT TIME COMMAND
52363 pO Ss 0:00.01 -tcsh (tcsh)
52369 pO R+ 0:00.00 ps

® pS aux
$ ps aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
tsaimh 52362 0.0 0.4 6536 3852 ?? S 5:02PM 0:00.01 sshd: tsaimh@ttyp® (sshd)
root 52380 0.0 0.3 3756 3224 ?? Ss 5:08PM 0:00.00 sendmail: accepting connections (s
smmsp 52384 0.0 0.3 3644 2968 ?? Ss 5:08PM 0:00.00 sendmail: Queue runner@00:30:00 fo
® DS aUXWW
$ ps auxww
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
tsaimh 52362 0.0 0.4 6536 3864 ?? S 5:02PM 0:00.02 sshd: tsaimh@ttypO® (sshd)
root 52380 0.0 0.3 3756 3224 ?? Ss 5:08PM 0:00.00 sendmail: accepting connections
(sendmail)
smmMsp 52384 0.0 0.3 3644 2968 ?? Ss 5:08PM 0:00.00 sendmail: Queue runner@0:30:00 for
/var /spool/clientmqueue (sendmail) 18

DS comman

Explanation of ps —aux (BSD * Linux)

Field

Contents

USER

Username of process's owner

PID

Process ID

%CPU

Percentage of the CPU this process is using

%MEM

Percentage of the real memory this process is using

VSZ

Virtual size of process, in kilobytes

RSS

Resident set size (number of 1K pages in memory)

TT

Control terminal ID

STAT

Current process status:

e R = Runnable e T = Stopped
e I = Sleeping (> 20 sec) e D = In disk (or short-term) wait
e S = Sleeping (< 20 Sec) e Z = Zombie
Additional Flags:
e > = Process has higher than normal priority
e N = Process has lower than normal priority
® < = Process is exceeding soft limit on memory ues
® A = Process has requested random page replacement
® S = Process has asked for FIFO page replacement
e V = Process is suspended during a vfork
e E = Process is trying to exit
e L = Some pages are locked in core
® X = Process is being traced ro debugged
® s = Process is a session leader (head of controller terminal)
® W = Process is swapped out
® + = Process is in the foreground of its control terminal

STARTED

Time the process was started

TIME

CPU time the process has consumed

COMMAND

Command name and arguments

19

ps command (BSD * Linux)

® PS -j *Use these options in shell scripts
S Pps -]
USER PID PPID PGID SID JOBC STAT TT TIME COMMAND

tsaimh 52363 52362 52363 52363 O Ss po 0:00.03 -tcsh (tcsh)
tsaimh 52458 52363 52458 52363 1 R+ po 0:00.00 ps -j

® PS -0

$ ps -o uid,pid,ppid,%cpu,%mem,command
UID PID PPID %CPU %MEM COMMAND
1001 52363 52362 0.0 0.3 -tcsh (tcsh)
1001 52462 52363 0.0 0.1 ps -o uid,pid,ppid,%cpu,%mem,command

e pS-L

$ ps -L

%cpu %mem acflag acflg args blocked caught comm command cpu cputime
emuletime f flags ignored inblk inblock jid jobc ktrace label 1lim lockname
login logname lstart lwp majflt minflt msgrcv msgsnd mwchan ni nice nivcsw
nlwp nsignals nsigs nswap nvcsw nwchan oublk oublock paddr pagein pcpu
pending pgid pid pmem ppid pri re rgid rgroup rss rtprio ruid ruser sid sig
sigcatch sigignore sigmask sl start stat state svgid svuid tdev time tpgid

tsid tsiz tt tty ucomm uid upr uprocp user usrpri vsize vsz wchan xstat 20
e S e 6 i R R I B swissnswviwsmaswrssvunannnsi s s aa s s e e su a A N KU 0

top command

last pid: 52477; load averages: 0.01, 0.05, 0.02 up 0+19:38:37 17:23:38
29 processes: 1 running, 28 sleeping

CPU states: 0.4% user, 0.0% nice, 0.0% system, 0.0% interrupt, 99.6% idle
Mem: 19M Active, 308M Inact, 113M Wired, 88K Cache, 111M Buf, 556M Free

Swap: 1024M Total, 1024M Free

PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND
697 root 1 76 © 3784K 2728K select 0:02 0.00% sshd
565 root 1 76 ® 1468K 1068K select 0:00 0.00% syslogd
704 root 1 8 O 1484K 1168K nanslp 0:00 0.00% cron

® \arious usage

o top -q run top and renice it to -20

o top-u don’t map uid to username

o top -U username show process owned by user
e [nteractive command

change display order (cpu, res, size, time)

show only processes owned by user ("+" means all)
show 10 information

Listing available options

O O OO0
N3J C O

htop command

.12 ©.11
B87:53:88

b

o =

S
8

nmpd.pid

e e e =< I =

f

Ch Co 20
Ch 0o 2o

-
P

e A Dbetter top
o Install it from sysutils/ntop

Runaway process

e Processes that use up excessive system resource or just go

berserk
o kill -TERM for unknown process
o renice It to a higher nice value for reasonable process

Appendix

Fork Bomb

BVBGRARRBAEE L R Em P/

Information Technology Center of Department of Computer Science, NYCU

Fork Bomb

e A process forking out of control

Cited from wiki

http://zh.wikipedia.org/wiki/Fork%E7%82%B8%E5%BC%B9#mediaviewer/File:Fork_bomb.svg

Fork Bomb

e A process forking out of control

load averages:
154 s
% nice, , i
Inact, . M W Cache, 255M Buf, 4228M Free
72M MFU, 897M MRU, 16K Anon, 16M Header, 562M Other
6M Total, 4896M Free

=%]

running
9. 7% nterrupt,

PID USERNAME THR PRI NICE 517 WES STATE TIME WCPU COMMAMNLC

4224 1 97 20 19760K 2924K RUN 1’ 6 4 16 forkl
95 ' 5 2° X RUN 3 B4:37 forkl

] 21 K RUN i B 15.9 Forkl

X RUN Fork

K RUN

K RUN

X RUN i 1% .67

K RUN 13 b I forkl

{ RUMN :28 15. forkl

X RUN 13 % R forkl

{ RUN 13 :11 15.48% forkl

< CPU13 24 %

K RUN

K RUN 9 B .

X RUN 11 64:5 15.48 :

24K RUN 8 :48 15.48% forkl

P
P

[I L N R T L I L R
L% T T O i Y Y T T T 0 O R
I'__'l Pd Pl Bd B B B

'_h-. ha

P

1
1
1
1
1
1
1
1 2
1
1
1
1
1
1
1

h

Fork Bomb -
How to create a fork bomb

o C/C++ e Bash (Shell script)
#include <unistd.h> O &}
int main(void) { # Define function
while(1) forkbomb() {
fork(); # Run twice with pipe
return 0; forkbomb | forkbomb &
} }
o Perl # Start the fork bomb
fork while fork Foridens
e \Windows
%0 | %0 DON’T DO THAT!!! 2

Fork Bomb (1/2)

e How to deal with fork bomb
o Just kill all of them
o $ killall -KILL bombName

e \When you have no more resource to fork your shell
o $exec killall -KILL bombName
o That shell will become "killall", and never goes back

e "killall" isn’t an atomic command
o More bombs may be created when killing them

o Run multiple "killall"

28
D e L L D TR T F T T P R TP TP T T

Fork Bomb (2/2)

e Prevent fork bomb
o Limit the maximum number of processes for a specific user
e /etc/login.conf

rmaxproc-cur=256:\

rmaxproc-max=512:\

