
1

Intro to Networking & Linux
Networking Commands
管培勛 (phkoan)
Credit to: 顏芝佑 (ycyyo), 許仲宇 (hsuchy), 施羿廷 (ytshih)

22

Outline
● Introduction to Networking
● Linux Networking Tools

○ traceroute & mtr
○ tcpdump
○ dig
○ ss
○ SSH
○ iproute2

● Linux Networking Features
○ netfilter
○ systemd-networkd & networkctl
○ systemd-resolved

33

Introduction to
Networking

44

TCP/IP Model
● Network Access Layer (or Link Layer, Layer-2)

○ Handles physical transmission of data frames.
○ Ethernet, IEEE 802.11 (Wi-Fi)

● Internet Layer (or Network Layer, Layer-3)
○ Routes and forwards packets across interconnected networks.
○ IPv4, IPv6

● Transport Layer (Layer-4)
○ TCP, UDP

● Application Layer (Layer-7)
○ HTTP, SMTP

Network Access
Layer Header

Payload

Transport Layer
Header

Network Layer
Header

Application Layer
Header

Illustration of encapsulation

55

FYR: TCP/IP Model vs. OSI Model

source: TCP/IP Model - GeeksforGeeks

https://www.geeksforgeeks.org/computer-networks/tcp-ip-model/

66

Packet Encapsulation

source: Data Encapsulation and De-encapsulation Explained

https://www.computernetworkingnotes.com/ccna-study-guide/data-encapsulation-and-de-encapsulation-explained.html

77

FYR: Packet Encapsulation in VPN

source: Virtual Extensible LAN (VXLAN) Overview | Cisco Press

https://www.ciscopress.com/articles/article.asp?p=2999385&seqNum=3

88

Layer-2 - Local Area Network (LAN)
● A network that interconnects devices within a limited area of a single

broadcast domain.
○ Broadcast domain: Every device can receive frames through L2 broadcasting.

● Devices on the same LAN can physically communicate with each other
with MAC addresses.

99

Layer-2 - MAC Address & ARP
● MAC (Media Access Control) address is a universally unique identifier for

network interface card (NIC).
● ARP (Address Resolution Protocol) helps devices know IP-MAC mapping.

1010

Layer-2 - MAC Learning
● Each NIC maintains an ARP table, which stores IP-MAC mapping.

○ When NIC wants to know the MAC address of certain IP address, it will send ARP request to
ask who has the IP address.

○ The one having the requested IP address will response with an ARP reply, containing its
own MAC address.

● Switch maintains MAC address table, which stores port-MAC mapping.
○ Which is "which MAC address is reachable through which port".
○ When switch sees a packet flows into a port, it records the port-MAC mapping to the table.
○ If table miss, the packet will be flooded to all ports.

source: Cisco Catalyst 2960 Series Switches

https://www.cisco.com/c/en/us/support/switches/catalyst-2960-series-switches/series.html

1111

Layer-3 - IPv4 address
● 32 bits long, hierarchical addressing
● Consists of two parts

○ High order bits: Network ID (or Subnet ID)
○ Low order bits: Host ID

● Two special IP addresses in each network
○ First IP: Network Number, e.g. 140.113.0.0/24, 140.113.215.128/25
○ Last IP: Broadcast IP, e.g. 140.113.255.255/16, 140.113.215.127/25
○ Conventionally, we use the second-to-last IP address as gateway

● Reserved IP addresses
○ Private network: 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8
○ Loopback addresses: 127.0.0.0/8
○ Link-local addresses, multicast addresses, etc.

Example: 140.113.215.130/25
140.113.215.10000010

Network ID(25 bits) Host ID
(7bits)

available IP addresses in this network:
140.113.215.128 to 140.113.215.255

prefix length

10000000 11111111

1212

Layer-4
● TCP (Transmission Control Protocol) ensures reliable, ordered, and

error-checked delivery of data between applications.
● UDP (User Datagram Protocol) sends data without guaranteeing delivery,

order, or error correction, making it faster but less reliable.

source: When is UDP preferred to TCP? - GeeksforGeeks
source: ProgrammerHumor

https://www.geeksforgeeks.org/computer-networks/when-is-udp-preferred-to-tcp/
https://programmerhumor.io/memes/udp

1313

NAT
● NAT (Network Address Translation) is a technique that allows multiple

devices on a local network to share a single public IP address.
● It is achieved by modifying the IP address information in packet headers

as they pass through a router or firewall.

source: What is Network Address Translation? | VMware

https://www.vmware.com/topics/network-address-translation

1414

NAT
● There are two types: SNAT (Source NAT) and DNAT (Destination NAT).

○ SNAT modifies the source IP address of outgoing packets (usually to a router's public IP).
○ DNAT changes the destination IP of incoming packets to direct them to specific devices

within a private network.

source: What Is Network Address Translation? A Guide to NAT - IPXO

https://www.ipxo.com/blog/what-is-nat/

1515

FYR - NAT Table
● Router or firewall will maintain a

mapping of private address & port
to public address & port.

● The mapping is called NAT table.
○ Inside Local: Host's private address
○ Inside Global: Host's address after

NAT
○ Outside Global: Target host's address
○ Outside Local: Target host seen from

the internal network, often the same
as Outside global

source: What is NAT (Network Address Translation)?

https://www.uninets.com/blog/what-is-nat-network-address-translation

1616

FYR - NAT Cone Type
● For example, in a connection from PC to 1.1.1.1:22, ip1:port1 is

mapped to ip2:port2.
○ Full Cone: Any external host can access ip1:port1 via ip2:port2.
○ Address Restricted Cone: Only 1.1.1.1 can access ip1:port1 via ip2:port2.
○ Port Restricted Cone: Only 1.1.1.1:22 can access ip1:port1 via ip2:port2.
○ Symmetric: As strict as Port Restricted Cone, but different destinations will have different

public address-port pairs.

1717

FYR - NAT Cone Type

source: What Is Network Address Translation (NAT)

https://www.telecomate.com/what-is-network-address-translation-nat

1818

NAT Traversal
● NAT traversal enables devices behind NAT to establish and maintain

peer-to-peer connections across the internet by bypassing NAT barriers.
● Methods: UDP hole punching, TURN, etc.
● How NAT traversal works is a great article from Tailscale, you can learn

much from it.

https://tailscale.com/blog/how-nat-traversal-works

1919

NAT Traversal
Example: UDP hole punching.

1. Clients send a request to a public node.
2. The public node knows the NAT

address-port pairs of the clients.
3. The public node tells the clients where each

other is.
4. The clients directly send messages to the

NAT endpoint.

source: Proposal for NAT UDP hole-punching · Issue #433 · libp2p/go-libp2p · GitHub

https://github.com/libp2p/go-libp2p/issues/433

2020

DHCP
● DHCP (Dynamic Host Configuration Protocol) provides a framework for

passing configuration information to hosts on a TCP/IP network
○ It can pass IP address, hostname, gateway, DNS server, etc.

● DHCP is based on the Bootstrap Protocol (BOOTP).

2121

DHCP - Client-Server Interaction
1. Client broadcasts DHCPDISCOVER message
2. Server responds with DHCPOFFER message
3. Client sends DHCPREQUEST message to server
4. Server replies with DHCPACK message

Finally, the client gets an IP address (DHCP lease).

2222

DHCP - Server
● DHCP server has a pool of IP addresses, which can be assigned to clients.
● When DHCP server offers an IP address to client, it remembers the IP-MAC

mapping of that client.
● With the records, the DHCP server knows which IP addresses are still

available.
○ Note: If you set an IP address in DHCP pool to an interface, the DHCP server will not know

about this, and it can lead to IP address conflict.

2323

DNS
● DNS (Domain Name System) translates human-friendly domain names

(like example.com) into IP addresses, the identifier on Internet.
○ The Internet's phonebook

● A domain name is hierarchical; the rightmost part is the highest level in
the hierarchy.

● The resolution starts from the highest level.

source: Domain Name System (DNS) - GeeksforGeeks

https://www.geeksforgeeks.org/computer-networks/domain-name-system-dns-in-application-layer/

2424

DNS

source: Understanding DNS: What It Is & How It Works | Indusface

https://www.indusface.com/learning/what-is-dns/

2525

DNS - Roles
● Client: Sends DNS queries to server.
● Resolver: Accepts your DNS queries and resolve the name for you.
● Root DNS server: Directs DNS queries to the appropriate TLD servers

based on the extension of a domain name (like .com).
● TLD Server: Points to the authoritative DNS servers responsible for

specific domain names within its TLD zone.
○ TLD: Top Level Domain

● Authoritative DNS Server: Holds the actual DNS records for a domain and
provides final, trusted answers to DNS queries.

2626

DNS - Record Types
● SOA: The primary authoritative DNS server, administrative information

like the domain's serial number, refresh rate, and contact details
● A: The IPv4 address of a domain name
● AAAA: IPv6 version of A record
● NS: A list of the authoritative DNS servers
● MX: The mail server responsible for receiving email on behalf of a domain
● TXT: Arbitrary text data

2727

Linux Networking Tools

2828

traceroute
● It prints every hop packets flows

to, from you to a given host.
● It's often used when you want to

troubleshoot reachability and
routing.

Source: What is the Traceroute Command in Linux?

https://www.cbtnuggets.com/blog/technology/networking/traceroute-command-in-linux

2929

traceroute
● Frequently used options

○ -n: Do not try to print hostname for each hop. Only showing numeric IP address.
○ -I/-T: Using ICMP ECHO/TCP SYN packet for probing route

■ Traceroute use UDP as default. But Firewall may blocked UDP.
○ -z sendwait: Waiting sendwait between each probe packet

■ If sendwait <= 10, the unit will be second. Otherwise unit will be milisecond.

3030

mtr (My TraceRoute)
● It provides a prettier interface for traceroute.
● It can repeatedly preform traceroute and automatically caculate

summarized statistics.

source: mtr (My TraceRoute) — usage and practice

https://medium.com/@xakrume/mtr-basic-usage-649cabf37f40

3131

tcpdump
● A tool for capturing packets through NIC and dumping captured packets.
● Filter expression allows users to capture packets that satisfy some

conditions.
○ Such expression is called pcap-filter. See manual.

● Frequently used options
○ -i interface: monitor on interface. Usually require root permission.
○ -q/-v/-vv/-vvv: output quietly / verbosly / more verbosly / much more verbosly
○ -A/-x/-X: print captured packet header and content in ASCII / HEX / both.
○ -w file: save captured packet in file (in PCAP Capture File Format, binary)
○ -r file: read packet info from file.

● For example, tcpdump -i eth0 dst port 80 captures packets passing
through the eth0 interface where the destination port is 80.

https://man.archlinux.org/man/pcap-filter.7.en

3232

FYR: WireShark
● It can be viewed as tcpdump with GUI.
● You can dump the packets with tcpdump -w and open the PCAP file with

WireShark.

source: How I use Wireshark

https://jvns.ca/blog/2018/06/19/what-i-use-wireshark-for/

3333

dig
● A tool to perform DNS lookups and display the answers

○ Another useful tool for similar functionality is nslookup.
● Syntax: dig @server name type

○ You can also use dig @server -t type name to eliminate ambiguity
○ The types can be A, AAAA, MX, TXT, etc., and the default is A.

● Frequently used options
○ -x addr: performs reverse DNS lookup for addr

■ You do not need to provide name and type, if using this options.
○ +noall +answer: displays only answer section
○ +short: displays only rightmost column of answer section

https://man.archlinux.org/man/nslookup.1

3434

ss
● A tool used to dump socket statistics
● Frequently used options

○ -n: show numeric port number
○ -r: show hostname instead of IP address
○ -4/-6: show IPv4/6
○ -t/-u/-x: show TCP/UDP/Unix domain socket
○ -p: show process which uses socket
○ -l: show listening socket

3535

ss
● ss supports advanced filtering.
● The filter can be combined with the options.
● For example,

○ ss state listening: filter the sockets in listening state
○ ss -t dst :22: filter the TCP sockets connected to 22 port of any host
○ ss dst :5432 and src 127.0.0.1: filter the sockets connected to 5432 port of any

host and initiate from 127.0.0.1

3636

FYR - netstat
● netstat is an old tool, and ss is its modern alternative.

○ In some old machines, you can only use netstat.
● For example,

○ netstat -l: list the listening sockets
○ netstat -nt | grep ':5432': list TCP connections and grep 5432 port

3737

SSH
● Perhaps the most useful tool for login into a remote host machine

○ Besides CLI arguments, you can also use config file to manage ssh options, per host basis.
● Frequently used options

○ -l username: tried login remote machine as username
○ -p port: specify port on remote machine to connect to.

■ or you can write as: [user@]dst_hostname[:port]
○ -i id_file: specify id_file as private key file for public key authentication
○ -J [user@]dst[:port]: first connect to dst, then connect to host from dst.

■ useful when host is public unreachable, and dst is a entrypoint of such intranet.
○ -L/-R: SSH port forwarding. Details on following pages.

■ You can also read this great article for more info.

https://man.archlinux.org/man/ssh_config.5.en
https://iximiuz.com/en/posts/ssh-tunnels/

3838

SSH
● You can use SSH key to login without password.
● The steps:

○ Use ssh-keygen to generate a key pair.
○ Copy the public key to ~/.ssh/authorized_keys on remote host.
○ Try ssh again and you should be able to login without password.

3939

SSH
● If you have a SSH bastion, you can use -J to access internal hosts via the

bastion.
● For example, ssh -J <user>@<bastion> <user>@<target host>.

source: Understanding the Purpose and Secure deployment of an SSH Bastion!!

https://medium.com/@talukder9712/understanding-the-purpose-and-secure-employment-of-an-ssh-bastion-f0d647f3db61

4040

SSH - Local Port Forwarding
● You're doing your homework with an laptop at coffee shop.

○ That is, your laptop is very likely behind NAT, which is not publicly reachable.
● Your nginx is running on your PC in your dorm with a public IP.

○ The nginx server is listening request on 127.0.0.1:8080.
● You want to access your nginx from your laptop.

your PC

Web server
127.0.0.1:8080

your laptop

Private network
SSH server

140.113.2.2:22✅

❌

4141

Listen on
localhost:9999

SSH tunnel

Laptop PC

SSH
Client

SSH
Server

Web
Server

Listen on
localhost:8080

curl localhost:9999
forwarding

● -L [bind_address:]port:host:hostport
○ Example: client runs ssh <server_addr> -L 9999:localhost:5432

■ 9999: laptop's port
■ localhost:5432: the address remote host (PC) sees

○ SSH client will listen on local address, and forward packet to SSH server.
○ SSH server will transmit forwarded packet to remote address.

SSH - Local Port Forwarding

4242

● Your classmate wants to connect to the web server on your laptop, but
your laptop is behind NAT.

● Why local port forwarding is impossible in this case?
○ Since your laptop is behind NAT, your classmate cannot SSH onto your laptop.

● Solution: Remote port forwarding

your
classmate’s PC

Web server
127.0.0.1:8080

your laptop

Private network SSH server
140.113.2.2:22

✅
SSH server

192.168.1.1:22 ❌

❌
NAT

SSH - Remote Port Forwarding

4343

● -R [bind_address:]port:host:hostport
○ Example: client runs ssh server_addr -R 0.0.0.0:9999:127.0.0.1:5432

■ 0.0.0.0:9999: listen address of remote PC
■ 127.0.0.1:5432: service address of the laptop

○ SSH server will listen on remote address, and forward packet to SSH client
○ SSH client will transmit forwarded packet into local address

SSH - Remote Port Forwarding

SSH tunnel

PCLaptop

SSH
Server

SSH
Client

Web
Server

Listen on
127.0.0.1:8080

curl localhost:9999
forwarding

Listen on
0.0.0.0:9999

4444

iproute2
● A tool can manage various network objects.
● Mostly used:

○ ip address: manage address on a device. (man)
○ ip link: configure network device, or create virtual device. (man)
○ ip route: configure routing table. (man)
○ For reference of other objects, see ip(8)

● Frequently used options:
○ -c: print result in color.

https://man.archlinux.org/man/ip-address.8.en
https://man.archlinux.org/man/ip-link.8.en
https://man.archlinux.org/man/ip-route.8.en
https://man.archlinux.org/man/ip.8.en

4545

● ip link show: show all interfaces (show can be omitted)
● ip link show bridge: show bridge interfaces
● ip link add name dum0 type dummy: add a dummy dev called dum0
● ip link add name veth11 type veth peer name veth22

○ Add a veth pair, one end named veth11 and other end name veth22
● ip link set eth0 up/down: bring eth0 up/down
● ip link set veth11 master br0: connect ve11 onto bridge br0
● ip link del dum0: delete dev dum0

iproute2 - ip link

4646

● ip addr show: show addresses of all interfaces
● ip addr show up: show addresses of up interfaces
● ip a add 192.168.100.1/24 brd 192.168.100.255 dev eth0

○ Add such address to dev eth0
○ brd can also be replaced with +, which represents last the IP address in the subnet.

● ip a del 192.168.100.1/24 dev eth0: Remove such address
● ip a flush dev eth0: remove all address on eth0

iproute2 - ip address

4747

● ip route [show]: print the routing table
● ip route add 10.1.100.0/24 via 192.168.2.254 dev tun0

○ Add a route: for packet destination prefix with 10.1.100.0/24, send it from tun0 and use
192.168.2.254 as next hop.

● ip route add default via 192.168.1.254 dev eth0
○ Set default gateway to 192.168.1.254.

● ip route del 10.1.100.0/24 via 192.168.2.254 dev tun0
○ Delete such route.

● ip route get to 8.8.8.8
○ Show which route will be chosen for 8.8.8.8
○ Useful when debug

iproute2 - ip route

4848

default via 172.18.23.254 dev wlo1 proto dhcp src 172.18.16.1 metric 600
172.18.16.0/21 dev wlo1 proto kernel scope link src 172.18.16.1 metric 600
172.18.16.0/24 dev wlo2 proto static scope link src 172.18.16.2

● The output of ip route is shown above.
● The first field is destination prefix.

○ For most common case, packet route is decided by its destination.
○ If the prefix of packet destination matchs a route, the route will be a candicate.
○ If there are multiple candidates, the route with longest prefix will be chosen.
○ default is an alias for 0.0.0.0/0, which covers all IPv4 addresses.
○ For example,

■ 172.18.17.1 matches 1st and 2nd route. The 2nd route will be chosen since it has
prefix length 21.

■ 172.18.16.1 matches 1st, 2nd & 3rd route. The 3rd route will be chosen since it has
prefix length 24.

iproute2 - ip route

4949

default via 172.18.23.254 dev wlo1 proto dhcp src 172.18.16.1 metric 600
172.18.16.0/21 dev wlo1 proto kernel scope link src 172.18.16.1 metric 600
172.18.16.0/24 dev wlo2 proto static scope link src 172.18.16.2

● dev means the interface the packet will go to.
● proto indicates the method to obtain this route

○ kernel means it is from auto configuration.
○ static means it is manually set.

● via means the address of next hop
○ i.e. gateway, i.e. "the next router this packet should go to"
○ Route with no next hop implies destination should resides in same subnet (LAN).

iproute2 - ip route

5050

● If you want to make your Linux machine a router:
○ Besides well configured routing table, you should also enable packet forwarding.
○ Perhaps you should also configure netfilter.

● In default, packet route is decided based on destination address
○ If you want to use source address or other info on packet for routing decision, consider

Policy-based routing
■ For more info, read this article, ip-rule(8), and table option of ip-route(8)

iproute2 - ip route

https://linuxconfig.org/how-to-turn-on-off-ip-forwarding-in-linux
http://linux-ip.net/html/routing-rpdb.html
https://man.archlinux.org/man/ip-rule.8.en
https://man.archlinux.org/man/ip-route.8.en#table

5151

● A tool for network discovery and security auditing
● You can use it to quickly found reachable host and their open port.

○ nmap can also infer what service is actually running on this port, see manual.
● USED WITH CAUTION. You may get banned. Especially in school.

○ You can use scanme.nmap.org as target, for testing and practicing.

-sn: only host discovery -n: do not perforn DNS
resolve -v: verbose output -e interface: use which

interface

-O: show host OS version -sV: probing for version of
service

-sS: use TCP SYN
for port scanning

-p portsRange: scan only
portsRange

FYR - nmap

https://man.archlinux.org/man/nmap.1#SERVICE_AND_VERSION_DETECTION

5252

● iperf3 is used to measure network traffic, including throughput and
latency.

○ FYR: iperf2 and iperf3 are different projects, maintained by different teams, with different
goals.

○ We will only cover iperf3.
● iperf allows you test network between client and server.

○ Both need to run iperf. server runs iperf -s, while client runs iperf -c serverAddr.
● Frequently used options

○ -p port: run iperf on specified port; The default value is 5201.
○ -D: server only; making iperf3 server run as daemon (at background)
○ -b n[KMGT]: client only; set target bitrate to n bits/sec
○ -t time/-n n[KMGT]: client only; run for time seconds / run until send n bytes

FYR - iperf3

5353

Linux Networking Features

5454

Network Namespace
● Network namespace

○ Fundamental of container network
○ Logically separate network resource
○ Each namespace has its own:

■ Routing table
■ Firewall rules
■ Network devices (NICs)

● Process can only see and
manipulate network resource
within its namespace.

5555

veth
● A special type of virtual interface and always comes in pair.
● Two veth interfaces can be in different namespace.

○ It enables cross-namespace communication.

● Veth transmits packet from/to peer veth
○ You can think the link between veth pair as an ethernet cable.

source: Introduction to Linux interfaces for virtual networking

https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking

5656

Bridge
● A special type of virtual interfaces
● It acts like a lightweight virtual

switch.
○ Physical/Virtual network

interface can connected to it.
● Bridge can forward packets

to/from connected interface.

source: Introduction to Linux interfaces for virtual networking | Red Hat

https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking

5757

netfilter
● Netfilter is a community-driven collaborative FOSS project.
● It provides packet filtering software for the Linux 2.4.x and later kernel.

○ Packet filtering
○ Network address (and port) translation
○ Userspace packet queueing
○ Packet mangling

5858

netfilter
● xtables (legacy)

○ iptables, arptables, ebtables
○ Allowing kernel modules to register callback functions

source: Netfilter | Wikipedia

https://en.wikipedia.org/wiki/Netfilter

5959

● nftables
○ Replacing the legacy xtables with nftables families
○ No predefined tables in nftables framework

netfilter

source: Netfilter hooks | nftables wiki

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks

6060

systemd-networkd
● System daemon can manage network configurations.

○ But it's not the only option in Debian.
● It detects and configures network devices that matched some rules.

○ It's useful for container or VM network, as they may create virtual device dynamically.
○ It can also create virtual device.

● Use three kinds of network configuration
○ .network: configures network device
○ .netdev: creates virtual network device
○ .link: modifies attributes of physical device (used by udev)

● networkctl is a CLI tool to interact with daemon.

https://man.archlinux.org/man/systemd-networkd.8
https://man.archlinux.org/man/networkctl.1.en

6161

● Each configuration file contains multiple sections.
○ [<Section name>] indicates the start of a section

● Each section contains one or more key-value pairs
○ syntax: key=value
○ One line for one key-value pair.

● Configuration file should be placed in /etc/systemd/network/ to be
recongnized by systemd-networkd.

systemd-networkd - Syntax

6262

● The .network configuration file will
only applied on matched interface.

○ We need to specify rules for matching
interface.

○ Such rules should reside in [Match]
section.

○ Interfaces that satisfy all rules in [Match]
section will then be configured by that
config file.

[Match]
Name=eth0 eth1

[Match]
Name=!br0
MACAddress=12:34:56:78:90:ab
Kind=Bridge

[Match]
Name=eth*

systemd-networkd - .network

6363

● systemd-networkd loads configuration files in filename lexicographic
orders.

○ That is, bar.network will be processed before foo.network.
● In convention, we prefix filename with 2 digits.

○ e.g. 40-foo.network
○ This way, we can easily tell the priority of each configuration file

● Note that interface can be configured with only first matched
configuration file.

○ When an interface is matched by multiple configuration files, the interface will only
configured by the file with higher priority

systemd-networkd - .network

6464

● Every section except [Match] is used for configuring interface.
● Sections you should know:

○ [Link] - corresponding with hardware properties of interface
○ [Address] - setting address of interface
○ [Route] - setting route of interface
○ [Network] - miscellaneous

■ Contains key about DNS, DHCP, LLDP, NTP, NAT, Address, Route, Gateway,
Master device (e.g. Master bridge), etc.

systemd-networkd - .network

6565

[Link]
MACAddress=12:34:56:78:9A:BC
MTUBytes=1500
ActivationPolicy=always-up

● It will configure interface:
○ Sets its MAC address to 12:34:56:78:9A:BC
○ Sets its MTU to 1500B
○ Makes it "always-up".

systemd-networkd - .network

6666

[Address]
Address=192.168.1.1/24
[Address]
Address=192.168.2.1/24
Broadcast=true
AddPrefixRoute=true

● Multiple [Address] sections = multiple addresses are configured.
○ The first will be 192.168.1.1/24, and the second will be 192.168.2.1/24
○ Broadcast=true: broadcast address is auto derived from address. Default is true.

■ 192.168.1.255, 192.168.2.255 in this case.
○ AddPrefixRoute=true: it will add a route based on address. Default is true.

■ Routes with destination prefixes 192.168.1.0/24 , 192.168.2.0/24 in this case.

systemd-networkd - .network

6767

[Route]
Destination=192.168.3.0/24
Gateway=192.168.1.254
[Route]
Destination=0.0.0.0/0
Gateway=10.2.2.2

● Multiple [Route] sections mean that multiple routes are configured.
○ Routes configured by this way will go out via corresponding interface.

● For example, if eth0 is matched, this config will generate 2 routes:
■ default via 10.2.2.2 dev eth0
■ 192.168.3.0/24 via 192.168.1.254 dev eth0

systemd-networkd - .network

6868

[Network]
Address=192.168.1.1/24
Address=192.168.2.1/24
Gateway=192.168.1.254/24
DNS=8.8.8.8
IPv4Forwarding=yes

● Address: shorthand of [Address] section with only
Address key is specified

○ Specified multiple times = multiple addresses
● Gateway: shorthand of [Route] section with only

Gateway key is specified
○ It will be default route, since destination is not specified

● DNS: address of DNS server
● IPv4Forwarding: enable packet forwarding on this

interface

systemd-networkd - .network

6969

systemd-networkd - .netdev
● The .netdev files can be used to create virtual devices.
● We create a simple bridge interface as example.

7070

systemd-networkd - .netdev
● First, we need a .netdev file to

create the bridge interface.
○ Follow the convention, name it

20-br0.netdev.
● After the creation, you can see the

interface via ip a, but it does not
have any address.

[NetDev]
Name=br0
Kind=bridge

7171

● We next bind eth0 to br0.
○ Name it 20-br0-eth0.network.
○ Note: the .network file for eth0

should be removed.
● Finally, we set configure

.network file for br0.
○ Name it 20-br0.network.

systemd-networkd - .netdev
[Match]
Name=eth0

[Network]
Bridge=br0

[Match]
Name=br0

[Network]
DHCP=yes

7272

● A CLI tool for interacting with systemd-networkd
● networkctl or networkctl list: list interface and their status
● networkctl status <interface>: print detailed status of a interface
● networkctl reload: reload configuration

networkctl

7373

● In the output of networkctl, you can see operational and setup status.

networkctl

7474

● off: powered off
● no-carrier: powered on but has no carrier

○ E.g. for a ethernet interface, no-carrier means
unplugged

● degraded: has carrier but is not routable yet
○ Definitely cannot go beyond the local network
○ E.g. has address but no gateway

● routable
○ Possibly can reach external network

networkctl

7575

● If a network configuration seems does not applied:
○ Check output of networkctl for overview of interfaces.
○ Check output of networkctl status <interface> for more detailed information.

■ Check which configuration file is applied on such interface.
○ Use journalctl -u systemd-networkd to check log of daemon.
○ Use net tools we discussed in previous sections to diagnose network.

systemd-networkd - Troubleshooting

7676

systemd-resolved
● A systemd service managing name resolution
● The main configuration file is /etc/systemd/resolved.conf, and all

files under /etc/systemd/resolved.conf.d/ will be included.

7777

systemd-resolved
● For DNS, most of the configuration can be done under [Resolve] section.
● Frequently used attributes

○ DNS: the main DNS servers, listed in space-separated way
○ FallbackDNS: DNS servers used when all main DNS servers fail
○ Domain: the search domain (the domain suffix)
○ DNSSEC: enable DNSSEC or not

[Resolve]
DNS=1.1.1.1 8.8.8.8
FallbackDNS=8.8.4.4
Domains=cs.nycu.edu.tw
DNSSEC=yes

7878

● Check the status via resolvectl status.
● Check query results via resolvectl query <domain name>.

systemd-resolved - Troubleshooting

