
1

SA Homework 1
Shell Script
ymlai

22

Requirements 
● In homework 1, you need to write a shell script to complete the tasks

from the task server.  
● Judger will log in to your server via ssh and invoke the script. If you send

the wrong answer to the task server (or timeout), you will not get the
points of the checkpoint. 

 

● Hint: 
○ CLI tools: curl, jq, awk, grep… 

33

Task Server 
● Create tasks and validate the problem answer 

● Endpoint: http://192.168.255.69 

● Flow: 

 
Task server Your script

Judger

1. Invoke

2. Solve

3. Verify

http://192.168.255.69

44

Task Server API (1/6) 
● GET / 

○ Response 

■ Body (application/json) 

 

● GET /dictionary 
○ install the dictionary.txt 

 
aahed
aalii
aargh
aarti
.
.
.

{
"message":"Have fun to 2025 NYCU SA HW1!"

}

55

Task Server API (2/6) 
● POST /tasks 

○ Request 

■ Body (application/json) 

 

○ Response 

■ Body (application/json) 

{
 "stuid": "75",
 "type": "WORDLE"
}

{
"stuid": "65",
"type": "QUORDLE"

}

{
 "stuid": "75",
 "type": "WORDLE",
 "id": "4a9c99f4-0241-4f3d-a003-7b2f6bb455db",
 "status": "PENDING",
 "guess": "0",
 "problem": "XXXXX"
}

{
 "stuid": "65",
 "type": "QUORDLE",
 "id": "4a9c99f4-0241-4f3d-a003-7b2f6bb455db",
 "status": "PENDING",
 "guess": "0",
 "problem1": "XXXXX",
 "problem2": "XXXXX",
 "problem3": "XXXXX",
 "problem4": "XXXXX"
}

66

Task Server API (3/6) 
● POST /tasks/:id/submit 

○ Request 

■ Body (application/json) 

 

○ Response 

■ Body (application/json) 

{
 "answer": "WATER"
}

{
 "answer": "MINOR"
}

{
 "problem": "XXBXA"
}

{
 "problem1": "XXBXA",
 "problem2": "XXXXX",
 "problem3": "XXBXX",
 "problem4": "AXAXX"
}

77

Task Server API (4/6) 
● GET /tasks/:id 

○ Response 

■ Body (application/json) 

{
 "stuid": "75",
 "type": "WORDLE",
 "id": "4a9c99f4-0241-4f3d-a003-7b2f6bb455db",
 "status": "PENDING",
 "guess": "0",
 "problem": "XXXXX"
}

{
 "stuid": "65",
 "type": "QUORDLE",
 "id": "4a9c99f4-0241-4f3d-a003-7b2f6bb455db",
 "status": "PENDING",
 "guess": "0",
 "problem1": "XXXXX",
 "problem2": "XXXXX",
 "problem3": "XXXXX",
 "problem4": "XXXXX"
}

88

Task Server API (5/6) 

{
 "stuid": "75",
 "type": "WORDLE",
 "id": "4a9c99f4-0241-4f3d-a003-7b2f6bb455db",
 "status": "FAILED",
 "guess": "10",
 "problem": "XXXBX"
}

{
 "stuid": "65",
 "type": "QUORDLE",
 "id": "4a9c99f4-0241-4f3d-a003-7b2f6bb455db",
 "status": "FAILED",
 "guess": "20",
 "problem1": "ABXBX",
 "problem2": "XAXBX",
 "problem3": "BBXXA",
 "problem4": "XXBXX"
}

● DELETE /tasks/:id 
○ Response 

■ Body (application/json) 

99

Task Server API (6/6) 
● GET /tasks/stu/:stuid 

○ Response 

■ Body (application/json) 
{
 "stuid": "75",
 "tasks": [
 {
 "id": "4a9c99f4-0241-4f3d-a003-7b2f6bb455db",
 "type": "WORDLE"
 },
 {
 "id": "9c8d23a4-1b7e-4b9a-a41c-d2a91f73b8f4",
 "type": "WORDLE"
 }
 ,
 {
 "id": "9c8d23a4-1b7e-4b9a-a41c-d2a91f73b8f4",
 "type": "QUORDLE"
 }
]
}

1010

Script Spec (1/2) 
● Provide an executable shell script placed at /home/judge/hw1.sh with

following available options: 

● -t 
○ Task type 

○ “SYS_INFO” | “WORDLE” | “QUORDLE” 

● -h 
○ Optional 

○ If the option is specified, just print the usage to stderr 

1111

Script Spec (2/2) 
● Invalid arguments should be rejected with a non-zero status code, with

the exact help message outputted to stderr 

$./hw1.sh -a
hw1.sh -t TASK_TYPE [-h]

Available Options:
-t SYS_INFO | WORDLE | QUORDLE : Task type
-h : Show the script usage

1212

Problem Spec - SYS_INFO 
● Print the system information 

○ Any extra tools or hardcode is forbidden 

$./hw1.sh -t SYS_INFO
OS: Debian GNU/Linux 13 (trixie) x86_64
Kernel: 6.12.41+deb13-amd64
Shell: sh
Terminal: /dev/pts/0
CPU: Intel(R) Core(TM) i9-9880H CPU @ 2.30GHz

1313

Problem Spec - WORDLE 
1. Request a task from the server. 

2. Solve the task in a single execution (the judge will ignore the output). 

 

● Problem status 
○ A: The correct letter is on correct position 

○ B: The letter is in real answer but wrong position 

○ X: The letter is not in the answer 

Example:

reference: https://www.nytimes.com/games/wordle/index.html

https://www.nytimes.com/games/wordle/index.html

1414

Problem Spec - QUORDLE 
1. Request a task from the server 

2. Solve the task in a single execution (the judge will ignore the output) 

 

● Problem status 
○ A: The correct letter is on correct position 

○ B: The letter is in real answer but wrong position 

○ X: The letter is not in the answer 

Example:

reference: https://www.merriam-webster.com/games/quordle/#/

https://www.merriam-webster.com/games/quordle/#/

1515

Problem Status (Wordle / Quordle) 
● SOLVED 

○ The correct answer was found before the maximum guess limit was reached. 

● FAILED 
○ The maximum guess limit was reached without finding the correct answer. 

● TIMEOUT 
○ The problem remained unsolved after 10 seconds. 

● PENDING 
○ The only status in which guesses can be submitted. 

1616

Note for Wordle / Quordle 
● stuid is calculated from your ip (ex: ip = 192.168.0.50, stuid = 0 * 256 + 50) 

● The max guess limit of Wordle: 10 

● The max guess limit of Quordle: 20 

● The max tasks (wordle + quordle) of each user: 10 

● Any output produced while solving Wordle or Quordle is acceptable 

● There is a 30% chance of randomly generating extra TIMEOUT tasks

(between 1 and 10) when a user sends a POST request to server/tasks 

● Deleting or searching for other students’ problems is forbidden. Any

illegal request will be logged by the judge server. 

1717

Shellcheck 
● ShellCheck is a static analysis tool for shell scripts. It helps catch errors

and suggests improvements to make your scripts better. 
● shellcheck -s sh -e SC2086 -a [your_script] (should return zero) 
● Version : 0.10.0 
● Make sure you installed the shellcheck or the judge may failed 

 

 

● Note: Disable any checks in the file is forbidden 

1818

SH(1): getopts 
● getopts optstring var 

The POSIX getopts command. The getopts command deprecates the older

getopt(1) command. The first argument should be a series of letters, each possibly

followed by a colon which indicates that the option takes an argument. The

specified variable is set to the parsed option. The index of the next argument is

placed into the shell variable OPTIND. If an option takes an argument, it is placed

into the shell variable OPTARG. 

1919

Restrictions 
● Must not use any other interpreters, compilers or programming

languages (such as Python, Ruby, Node.js, Go, Rust, Perl, GCC, Clang…) 
● Must not call any other self-written scripts, binaries or executables. 
● Extra file is not permitted during execute the script (except dictionary). 
● Only one shell, sh, is allowed. 
● Common tools (e.g. date, openssl, jq, etc.) are allowed. 
● If you are not sure whether a tool is allowed, please ask TA on Google

Groups. 
● Any violation will result in 0 points for the assignment. 

2020

Grading 
Automated grading (Online Judge), 100 pts 

● Usage (15%) 
○ Invalid options 

■ Exit Code (5%) 
■ Help Message (5%) 

○ Invalid type (5%) 

● Arbitrary argument position (10%) 
● Shellcheck (10%) 
● Tasks (65%) 

○ sysinfo (10%) 
○ wordle (25%) 
○ quordle (30%) 

2121

Attention 
● Your work will be scored by Online Judge system 

○ Only the LAST submission will be scored 
○ Late submission will NOT be accepted 

● ALWAYS BACKUP your system before submission, as we may do
malicious actions 

● You are restricted to use only sh to complete your work 
○ If you’re not sure what’s allowed, contact TAs. 
○ TAs reserve the right of final explanations. Specs and the points of each subjudges are

subject to change in any time. 

● Make sure everything works after reboot 

2222

Rules 
● TAs reserve the rights of final explanations 

● Open from 9/15 (Mon) 19:00 

● Deadline: 10/13 (Mon) 23:59 

● Late submissions will NOT be accepted 

2323

Appendix - Useful Utilities 
● sh(1p) 

● jq(1) 

● curl(1) 

● grep(1) 

● awk(1p) 

● sed(1) 

● head(1) 

● tail(1) 

● seq(1) 

● cut(1) 

● sort(1) 

● cat(1) 

● echo(1) 

● exit(1p) 

https://man.archlinux.org/man/sh.1p
https://man.archlinux.org/man/extra/jq/jq.1.en
https://man.archlinux.org/man/curl.1
https://man.archlinux.org/man/grep.1
https://man.archlinux.org/man/awk.1p
https://man.archlinux.org/man/sed.1
https://man.archlinux.org/man/head.1
https://man.archlinux.org/man/tail.1
https://man.archlinux.org/man/seq.1
https://man.archlinux.org/man/cut.1
https://man.archlinux.org/man/sort.1
https://man.archlinux.org/man/cat.1
https://man.archlinux.org/man/echo.1
https://man.archlinux.org/man/exit.1p

